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The objective of this article is to lay down the proper mathematical found-
ations of the two-dimensional theory of linearly elastic shells. To this end,
it provides, without any recourse to any a priori assumptions of a geomet-
rical or mechanical nature, a mathematical justification of two-dimensional
linear shell theories, by means of asymptotic methods, with the thickness as
the ‘small’ parameter.

A major virtue of this approach is that it naturally leads to precise mathem-
atical definitions of linearly elastic ‘membrane’ and ‘flexural’ shells. Another
noteworthy feature is that it highlights in particular the role played by two
fundamental tensors, each associated with a displacement field of the middle
surface, the linearized change of metric and linearized change of curvature
tensors.

More specifically, under fundamentally distinct sets of assumptions bear-
ing on the geometry of the middle surface, on the boundary conditions, and
on the order of magnitude of the applied forces, it is shown that the three-
dimensional displacements, once properly scaled, converge (in H', or in L2
or in ad hoc completions) as the thickness approaches zero towards a ‘two-
dimensional’ limit that satisfies either the linear two-dimensional equations
of a ‘membrane’ shell (themselves divided into two subclasses) or the linear
two-dimensional equations of a ‘flexural’ shell. Note that this asymptotic ana-
lysis automatically provides in each case the ‘limit’ two-dimensional equations,
together with the function space over which they are well-posed.

The linear two-dimensional shell equations that are most commonly used
in numerical simulations, namely Koiter’s equations, Naghdi’s equations, and
‘shallow’ shell equations, are then carefully described, mathematically ana-
lysed, and likewise justified by means of asymptotic analyses.

The existence and uniqueness of solutions to each one of these linear two-
dimensional shell equations are also established by means of crucial inequal-
ities of Korn’s type on surfaces, which are proved in detail at the beginning
of the article.

This article serves as a mathematical basis for the numerically oriented
companion article by Dominique Chapelle, also in this issue of Acta Numerica.
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1. Ubiquity of shells

A shell is a three-dimensional elastic body that is geometrically character-
ized by its middle surface and its ‘small’ thickness.

The middle surface S is a compact surface in R? not contained in a plane
(otherwise the shell is a plate) and it may or may not have a ‘boundary’
(for instance, the middle surface of a sail has a boundary, while that of a
basketball has no boundary).

At each point s € S, let a(s) denote a unit vector normal to S. Then the
reference configuration of the shell, i.e., the subset of R? that it occupies
‘before forces are applied to it’, is a set of the form {(s + Ca(s)) € R3 :
s € S,|¢| < e(s)}, where the function e : S — R is sufficiently smooth and
satisfies 0 < e(s) < e for all s € S and £ > 0 is thought of as being ‘small’
compared to some ‘characteristic’ length of S’ (its diameter for instance). If
e(s) = ¢ for all s € S, the shell is said to have a constant thickness 2e. If e
is not a constant function, the shell is said to have a variable thickness.

Note that, since ¢ will essentially be used as a dimensionless parameter
in the rest of this article, 2e should thus be interpreted as the ratio between
the actual thickness and a characteristic dimension of S, rather than as the
thickness itself.

Shells and their assemblages constitute, or are found in, a wide variety
of structures of considerable interest in contemporary engineering such as
the blades of a rotor, an inner tube, a cooling tower, cylindrical tanks, balls
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used in various games, the sails and the hull of a sailing boat, a high-altitude
scientific balloon (Figures 1.1 to 1.7); the doors, bumpers (fenders), bonnet
(hood), windscreen (windshield), found in a car body; the wings, the tail,
found in an aircraft; dams; parachutes.

Incidentally, these examples illustrate that actual shells generally have
a variable thickness. For the sake of simplicity, we shall, however, only
consider shells of constant thickness in this article, keeping in mind that this
is not a serious restriction, as the effect of considering a variable thickness
usually requires identical analyses, albeit involving substantially lengthier
expressions at times.

Fig. 1.1. A rotor and its blades provide an example of an elastic
multi-structure, composed of a three-dimensional substructure (the
rotor) and ‘two-dimensional’ substructures (the blades). Blades are
often modelled as nonlinearly elastic ‘shallow’ shells

Fig. 1.2. An inner tube inside a tyre provides an example of a shell
whose middle surface (a torus) has no boundary
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Fig. 1.3. A cooling tower in a utility plant: the middle surface is
approximately a ruled hyperboloid of revolution; the height is of
the order of 100 m, while the thickness varies from about 0.2 m at
the top to about 0.4 m at the bottom, thus providing an instance
of a ratio 2¢ of approximately 1/500. Together with its supporting
rods, a cooling tower constitutes another elastic multi-structure,
composed of a ‘two-dimensional’ substructure (the shell) and ‘one-
dimensional’ substructures (the rods). Although an instance of
a generalized membrane shell (Section 9), such a shell is advan-
tageously modelled by Koiter’s equations (Section 11)

60m

-
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Fig. 1.4. A cylindrical tank for storing fuel in an oil refinery is
another elastic multi-structure, composed of two ‘two-dimensional’
substructures: a cylindrical shell and a circular plate. In contem-
porary engineering, such a tank typically has a diameter of about
60 m, a height of 20 m, and a thickness varying from 0.04 m at the
top to 0.02 m at the bottom, thus providing an instance where the
ratio 2¢ is approximately 1/5000
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Fig. 1.5. Like an inner tube, balls used in various games provide
examples of shells whose middle surface (a sphere or an ellipsoid-
like surface) has no boundary. Another noteworthy feature, this
time of a mechanical nature, of such shells is that they offer no
resistance to crumpling when they are deflated. This observation
alone suggests that they cannot be appropriately modelled by linear
equations

Fig. 1.6. The sails and the hull of a sailing boat provide two strik-
ingly different instances of shells. Like a balloon, a sail offers no
resistance unless it is already under tension (think of a spinnaker);
thus it must also be modelled by nonlinear equations. By contrast,
linear equations should suffice for the modelling of the hull, because
it is not expected to undergo large displacements. But, even within
the linear realm, the mathematical modelling of such a shell is an
extremely challenging problem, for such a shell is usually made of
‘composite’, ‘multi-layered’ elastic materials

107
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Fig. 1.7. A high-altitude scientific balloon provides a fascinating
example. It is made by sealing together long, tapered, and ori-
ginally flat sheets of polyethylene. The resulting structure is an
incredibly thin shell, with an average thickness of about 20 mi-
crons and a height of about 20 m. The corresponding ratio 2¢ is
thus of the order of 10~%, probably a world record! (This spectacu-
lar example was kindly brought to the author’s attention by Frank
Baginski, The George Washington University, Washington, DC.)

2. Why two-dimensional shell theories?

If any one of the structures described in Section 1 is viewed as a three-
dimensional elastic body, the situation is on firm ground as regards its
mathematical modelling (see, e.g., Ciarlet (1988)). However, the situation
is far from being idyllic as regards its mathematical analysis, at least if it is
viewed as a nonlinearly elastic body. After the fundamental ideas set forth
by Ball (1977) and his landmark existence result, there indeed remain vari-
ous unresolved, and often exceedingly challenging, mathematical problems
in nonlinear three-dimensional elasticity.

The numerical analysis, that is, the conception and mathematical analysis
of convergent approximation schemes, most often finite element methods, is
likewise well developed in three-dimensional elasticity, especially in the linear
case (see in particular Ciarlet (1978, 1991), Glowinski (1984), Hughes (1987),
Robert and Thomas (1991), Brezzi and Fortin (1991), Brenner and Scott
(1994), Bathe (1996)), but also in the nonlinear case (see Le Tallec (1994)
for an overview). There is nevertheless a strong proviso: three-dimensional
numerical schemes almost invariably fail when they are applied to elastic
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structures that have a ‘small’ thickness, such as plates, shells, rods, and
their assemblages.

The ‘small’ thickness of a shell (or of a plate for that matter) makes it
natural to ‘replace’ the genuine three-dimensional model by a ‘simpler’ two-
dimensional model, that is, one that is posed over the middle surface of the
shell. First, such a ‘lower-dimensional’ theory is of a simpler mathematical
structure, which in turn generates a richer variety of results. Thus, while
the ‘global analysis’, that is, the theories of existence, regularity, bifurcation,
eversion phenomena, etc., are still partly in their infancy in nonlinear three-
dimensional elasticity (see in particular Marsden and Hughes (1983) and
Ciarlet (1988)), such theories are by now on much firmer mathematical
ground for the two-dimensional equations of nonlinearly elastic shells (see
in particular Antman (1995) and Ciarlet (2000)).

In fact, not only is this replacement natural from a theoretical viewpoint,
but it becomes a necessity when numerical methods must be devised for
computing approximate displacements and stresses: any reasonably accurate
three-dimensional discretization necessarily involves an astronomical num-
ber of unknowns, which renders it prohibitively expensive and makes its
implementation extremely delicate, if not utterly impossible.

By contrast, the situation is on fairly safe ground, at least on the the-
oretical side, as regards the application of finite element methods to two-
dimensional linear shell models: see in this respect Bernadou (1994) and the
‘companion article’ by Dominique Chapelle in this issue of Acta Numerica.

The above reasons clearly show why two-dimensional shell models are by
and large preferred. Accordingly, three major questions naturally arise.

(i) How do we derive two-dimensional shell models in a systematic and
rational manner from three-dimensional elasticity?

(ii) Has the mathematical analysis (existence, uniqueness, regularity, buck-
ling, etc., of solutions) of any known two-dimensional shell model reached a
satisfactory stage?

(iii) In a given physical situation, how do we choose between the various
‘available’ two-dimensional shell models so that the chosen one be an ‘as
good as possible’ approximation of the three-dimensional model it is sup-
posed to ‘replace’?

This last question is of paramount practical importance: it makes no sense
to devise sophisticated numerical methods for accurately approximating the
solution of the ‘wrong’ model!

The purpose of this article is to show how well-known, and sometimes
not so well-known, two-dimensional linear shell equations can be fully justi-
fied by an asymptotic analysis of the three-dimensional equations, with the
thickness as the ‘small’ parameter. It also provides a careful description of
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the physical situations where each kind of such equations should be safely
employed.

This article thus only considers linear two-dimensional shell theories. A
detailed justification from the same ‘asymptotic’ viewpoint, and a thorough
mathematical analysis, of nonlinear two-dimensional shell theories are found
in Ciarlet (2000).

Only recent references closely related to the ‘asymptotic’ approach fol-
lowed here are listed in this article. The readers interested in an overview
of the literature on shell theory may consult the reasonably complete bibli-
ography provided, together with various historical commentaries, in Ciarlet
(2000).

3. The three-dimensional Korn inequality in curvilinear
coordinates

Although Sections 3 to 6 have a prelimininary character, they are essential:
they provide an analysis of Korn’s inequalities in curvilinear coordinates,
whether in a three-dimensional domain or on a surface, which pervade most
of the mathematical analysis of linearly elastic shells.

It is well known that the three-dimensional Korn inequality plays a fun-
damental role in establishing the ezistence and uniqueness of a solution in
linearized three-dimensional elasticity in Cartesian coordinates. In essence,
this inequality states that the L2-norm of the linearized change of metric
tensor associated with displacement fields vanishing along a given portion,
with area > 0, of the boundary of a domain in R3, is equivalent to the H'-
norm of these fields, represented by means of their Cartesian components.

The objective of this section is to show that the three-dimensional Korn
inequality can in fact be directly established in curvilinear coordinates;
c¢f. Theorem 3.4.

A domain € in R™ is an open, bounded, connected subset of R™ with
a Lipschitz-continuous boundary I' = 92, the set 2 being locally on one
side of I'. As I' is Lipschitz-continuous, an area element dI' can be defined
along I', and a unit outer normal vector v = (v;)7_; (‘unit’ meaning that its
Euclidean norm is one) exists dI’-almost everywhere along I".

Boldface letters denote vector-valued or matrix-valued functions and their
associated function spaces. The norm in L?(Q) or L?*(Q) is denoted | - |o.o
and the norm in the Sobolev spaces H™ () or H™(Q2),m > 1, is denoted
| - llm,. We also consider the Sobolev space

H™1(Q) := dual of space H{(Q).
It is clear that
ve L2(Q)=>ve H Q) and v € HH(Q), 1 <i < n,
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since (the duality between the spaces D(Q) and D’'(Q) is denoted by (-, -))

<|U

o.allellas

(0, 0)] = \/dex

[(Giv, )| = | = (v, 0ip)| =

< [loallelle

— / v0;p dx
Q

for all ¢ € D(Q2). It is remarkable, but also remarkably difficult to prove,
that the converse implication holds.

Theorem 3.1: Lemma of J. L. Lions. Let Q be a domain in R™ and
let v be a distribution on 2. Then

{ve H'Q) and 9p € H1(Q), 1 <i<n} =0veL*(Q). O

This implication was first proved by J. L. Lions, as stated in Magenes
and Stampacchia (1958, p. 320, Note 27). Its first published proof for do-
mains with smooth boundaries appeared in Duvaut and Lions (1972, p. 111);
another proof was also given by Tartar (1978). Extensions to ‘genuine’ do-
mains, that is, with Lipschitz-continuous boundaries, were then given by
Bolley and Camus (1976), Geymonat and Suquet (1986), Borchers and Sohr
(1990), and Amrouche and Girault (1994).

From now on, Latin indices or exponents take their values in the set
{1,2,3} (except if they are used for indexing sequences) and the summation
convention is used. The Euclidean inner product and the vector product of
two vectors u,v € R3 are denoted by u - v and u A v; the Euclidean norm
of u € R3 is denoted by |u].

Let Q be a domain in R3, let = (x;) denote a generic point in €, let
0; = 0/0z;, and let © € C%(Q;R3) be a C!-diffeomorphism such that the
three vectors g,(z) := 9;@(x) are linearly independent at all points = € €.
The three vectors g;(x) form the covariant basis at the point @(x), while
the three vectors g'(x) defined by the relations g'(x) - g;(x) = 6; form the
contravariant basis at the same point (5} designates the Kronecker symbol).

In particular, the mapping ® : @ — R? is injective, so that any point
7 € ©(Q) is the image of a well-defined point x € Q. The three coordinates
xz; of x then constitute the curvilinear coordinates of T.

Let gij :==g;-g; and ¢ := g’ - g7 denote the covariant and contravariant

components of the metric tensor of the set {ﬁ}_, where Q := ©(1Q), let
g := det(g;;), so that \/g dx denote the volume element in €, and let Ffj =
g” - 0;g; denote the Christoffel symbols (whenever no confusion should arise,

the explicit dependence on z € € is henceforth omitted). The Christoffel
symbols are used for computing the first-order covariant derivatives

o gy TP
v||j = Ojv; L'ivp
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of a vector field v;g" defined over the set Q (for details about these classical
notions, see, e.g., Ciarlet (2000, Section 1.2)).

Consider a homogeneous, isotropic, elastic body whose reference configur-
ation is the set {2}~ and assume furthermore that {Q2}~ is a natural state.
When the equations of three-dimensional elasticity are stated ‘in curvilinear
coordinates’, that is, in terms of the coordinates of the set @ = @~ 1({Q} ),
the unknowns are the three covariant components u; : Q — R of the dis-
placement field u;g* : Q© — R3 of the set {Q}~. This means that, for each
z € Q, ui(x)g'(z) is the displacement of the point ®(z) € @(Q) = {Q}~.

In particular, the variational equations of linearized three-dimensional
elasticity in curvilinear coordinates take the following form (see, e.g., Ciarlet
(2000, Theorem 1.3-1)). The field w := (u;) satisfies

ueV(Q):={v= () e H(Q):v=00nTy},
Aijklek”l(u)ei”j(v)\/ﬁdx = / flvin/gdz
Q Q

for all v = (v;) € V(2), where I'g is a given subset of the boundary I" of
Q) with area I'g > 0, the contravariant components of the three-dimensional
elasticity tensor of the body are denoted by

AR — £gid Rl 4y gk gil gl giky,
the Lamé constants of the constituent elastic material are denoted by A
and p, the covariant components of the linearized change of metric tensor

associated with an arbitrary displacement field v;g* of the set {(AZ}_ are
denoted by

1
€ilj(v) = 5050 + Ovj) — vy,

and the given functions f* € L?(2) are the covariant components of the
applied body force (we could as well consider surface forces acting on I'—T').
The functions e;;(v) are also called the linearized strains in curvilinear
coordinates.

The interpretation of the functions e;;(v) is simple, yet crucial. Given
an arbitrary displacement field v;g° of the set ©(Q) with sufficiently smooth
covariant components v; : Q — R, let

9ij(v) := 0;(© + v g") - 9;(© + ug")

denote the covariant components of the metric tensor of the ‘deformed’ set
(© + v;g") () associated with this displacement field. Then

1 I
eij(v) = 5lgi(v) = gig]™,
where [- - -] denotes the linear part with respect to v = (v;) in the expres-

sion [- - -] (for a proof, see Ciarlet (2000, Theorem 1.5-1)). The components
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eiHj(v) are thus aptly called those of the ‘linearized’, ‘change of metric’,
tensor associated with the displacement field v;g* of the set ©(Q).

The boundary condition w = 0 on Ty, or the equivalent relation u;g* = 0
on I'y, constitutes a (homogeneous) boundary condition of place. It states
that the displacement field vanishes on the portion @(I'y) of the boundary
of the reference configuration ©(Q) = {Q}~.

Naturally, the usual equations of linearized three-dimensional elasticity
in Cartesian coordinates are recovered by letting ® = id, in which case
g = 69, Ffj =0, and g = 1.

Since there exists a constant C, = C.(2, ©, ) such that

Z Itij|? < CeAUM ()t

]

for all z € Q and all symmetric matrices (¢;;) (see, e.g., Ciarlet (2000,
Theorem 1.8-1)), establishing the existence and uniqueness of a solution to
the above variational problem thus amounts to establishing the existence of
a constant C such that

1/2

o]0 < C{ > leij(’v)lg,g}
0.

for all v € V(Q) (all the other assumptions of the Lax-Milgram lemma

are clearly satisfied). Our objective consists in proving that such a three-

dimensional Korn inequality in curvilinear coordinates indeed holds (The-

orem 3.4). Here, we follow Ciarlet (1993, 2000).

Such a Korn inequality is obtained in three stages (Theorems 3.2 to 3.4),
the first one consisting in establishing, as a consequence of the Lemma of
J. L. Lions (Theorem 3.1), a Korn inequality valid for all vector fields v =
(v;) € HY(Q), i.e., that need not satisfy any boundary condition on T

As its Cartesian special case, this inequality is truly remarkable, as only six
different combinations of first-order partial derivatives, that is, %(8]-%—1—81'%),
occur on its right-hand side, while all nine partial derivatives d;v; occur on
its left-hand side! A similarly striking observation applies to part (ii) of the
proof of Theorem 3.2.

Theorem 3.2: Korn’s inequality ‘without boundary conditions’ in
curvilinear coordinates. Let  be a domain in R? and let ©® € C?(Q;R?)
be a Cl-diffeomorphism of € onto {Q}~ = ©(12) such that the three vectors
g; = 0;0 are linearly independent at all points of Q. Given v = (v;) €
HY(Q), let

1
eifj(v) = {2(@% +0vj) = Fﬁ}vp} e L}(Q)
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denote the covariant components of the linearized change of metric tensor
associated with the displacement field v;g" of the set ®(). Then there
exists a constant Cp = Cp(£2, @) such that

1/2
o]0 < Co{ > ilga+> |ei||j(v)|(2),ﬂ} for all v € H' ().
i i

Proof. The proof given here is essentially an extension of that given in
Duvaut and Lions (1972, p. 110) for proving Korn’s inequality without
boundary conditions in Cartesian coordinates.

(i) Define the space
W(Q) == {v = (v;) € L*(Q) : ¢;(v) € L*()} .

Then, W(Q) is a Hilbert space when equipped with the norm || - [lwq)
defined by

1/2
[vllwe) = { Z lvild.0 + Z \einj(v)’g,ﬂ} :
]

%

Note that the relations ‘e;;(v) € L*(€)" are understood in the sense of

distributions. They mean that there exist functions e;;(v) in L*(Q) such
that

1
/ ej|j(v)pdr = —/ {Q(Uﬁj(p +v;0;) + F?jvpgp} dz for all p € D(Q).
Q Q

Consider a Cauchy sequence (v*)%°, with elements v* = (vF) € W(Q).
By definition of the norm |[| - [[w(gq), there exist functions v; € L*(©2) and
ei|; € L*(Q) such that

oF — v; in L2(Q) and eiHj('vk) — ¢;|; in L*(Q) as k — oo,

since the space L?(2) is complete. Given a function ¢ € D(Q), letting
k — oo in the relations

1
/Qei||j(vk)¢dx = —/Q {2(v£€0jg0 + U;?Gi(p) + I‘fjv;fcp} de, k > 1,
shows that e;; = e;;(v).

(ii) The spaces W(Q) and H'(2) coincide.

Clearly, H!(2) € W(Q). To prove the other inclusion, let v = (v;) € W(Q).
Then
1
eij(v) = 5(83'1),‘ + (%Uj) = {ei\lj('v) + Ffjvp} S LZ(Q),
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since e;);(v) € LQ(Q),FZ- € C%(Q), and v, € L*(2). We thus have

Opv; € HH(Q),
9;(Okvi) = {9jeik(v) + Oeij(v) — ieji(v)} € HHQ),

since w € L?(2) implies dyw € H(Q). Hence dpv; € L*(2) by the Lemma
of J. L. Lions (Theorem 3.1) and thus v € H'(Q).

(iii) Korn’s inequality without boundary conditions.

The identity mapping ¢ from the space H'(Q) equipped with || -||1 ¢ into the
space W(Q) equipped with || - [[w(q) is injective, continuous (there clearly
exists a constant ¢ such that ||v||lwq) < cf|v[1,q for all v € H!(Q)), and
surjective by (ii). Since both spaces are complete (cf. (i)), the closed graph
theorem then shows that the inverse mapping ¢! is also continuous. This
continuity is exactly what Korn’s inequality without boundary conditions
states. O

Our next objective is to ‘get rid’” of the norms |v;[p o on the right-hand
side of the Korn inequality established in Theorem 3.2 when the fields v =
(v;) € HY(Q) are subjected to the boundary condition v = 0 on I'y C T
and area I'g > 0. As a preliminary, we establish the weaker property that
the seminorm v — {3, |ei||j(v)\gyﬂ}1/2 becomes a norm for such fields,
by generalizing to curvilinear coordinates the well-known linearized rigid
displacement lemma in Cartesian coordinates. ‘Linearized’ reminds us that
if e;;(v) = 0 in §, that is, if only the linearized part of the change of metric
tensor vanishes, the corresponding displacement field v;g° is likewise only
the linearized approximation to a genuine rigid displacement.

Part (a) in the next theorem is a linearized rigid displacement lemma
without boundary conditions, while part (b) is a linearized rigid displacement
lemma with boundary conditions.

Theorem 3.3: Linearized rigid displacement lemma in curvilinear
coordinates. Let the assumptions be as in Theorem 3.2.

(a) Let v = (v;) € HY(Q) be such that

Then the vector field vig' : Q@ — R? is a ‘linearized rigid displacement’ of
the set ©((2), in the sense that there exist two vectors ¢,d € R? such that

vi(2)g'(x) =€+ d A O(x) for all z € Q.
(b) Let I'g be a dI'-measurable subset of I' = 02 that satisfies

area I'g > 0.
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Then
v=(v;) € H(Q),v =0 on Iy,

= v =0in .
€Z||](U) =0in Q } v ln

Proof. Let € = €' denote the basis vectors of the Cartesian frame. It is
verified that the following relations hold:

€;j(0)(@) = (enu(v)lg"lilg'];) (2) for all T = (&) := O(z),x € O,

where ;(0) = 1(8;0; + 8;0;),; := 0/0%;,[g"]; = g* - & denote the ith
Cartesian component of the vector g¥, and the vector fields o = (3;) € H'(Q)
and v = (v;) € HY(Q) are related by

bi(2)e’ = vi(2)g'(x) for all T = O(x), z € Q.
Hence
ey;(v) = 0in Q = €;(3) = 0 in Q,
and the identity (the same as in the proof of Theorem 3.2)
0; (D) = 0,8 (®) + Oy (B) — 0icx(®) in D'(Q)
further shows that
€j(0) = 0 in Q = 9;(9,0;) = 0 in D'().
By a classical result from distribution theory (Schwartz 1966, p. 60), each

function 9; is therefore a polynomial of degree < 1 (the set € is connected).
In other words, there exist constants ¢; and d;; such that

5:(Z) =& + dyF; for all T = (3;) € Q.
B1£5 €;j(v) = 0 also implies that cfij = —sz-; hence there exist two vectors
¢,d € R3 such that
B:(@)e' =¢+d A OZ for all T € (),
and hence such that
vi(2)g'(x) = ¢+ d A O(x) for all z € Q.

Since the set where such a vector field U;e’ vanishes is always of zero area
unless ¢ = d = 0 (as is easily proved), it follows that ¥ = 0 in 2, and hence
that v = 0 in €2, when area I'g > 0. Il

We are now in a position to prove a fundamental inequality in curvilinear
coordinates.
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Theorem 3.4: Three-dimensional Korn’s inequality in curvilinear
coordinates. Let the assumptions be as in Theorem 3.2, let I'g be a
dl-measurable subset of I' = 02 that satisfies

area I'g > 0,
and let the space V(Q2) be defined by
V(Q) :={v=(v) € H'(Q):v=00n To}.
Then there exists a constant C' = C(€2, Ty, ®) such that

1/2
vl < C{ Z |ei||j('v)(2),9} for all v € V().

]

Proof. Given v = (v;) € HY(Q), let

1/2
\U\W(Q) = {Z ’%’j(”)%n} .
i,J

If the stated inequality is false, then there exists a sequence (U’“)z":1 of
elements v* € V() such that

[o* ] = 1 for all k and lim [o*|w(q) = 0.

Since the sequence (v*)?°, is bounded in H'(Q), there exists a sub-
sequence (v')?°, that converges in L%(Q2) by the Rellich-Kondrasov theorem;
furthermore, since lim;_, |Ul|W(Q) = 0, each sequence (¢;; (v!))52, also con-
verges in L?(2) (to 0, but this information is not used at this stage). The

subsequence (vl)fil is thus a Cauchy sequence with respect to the norm

1/2
v =(vi) = { D lvilga+ Y lei;(v) 3,9} :
i i,

and hence with respect to the norm | - |1, by Korn’s inequality without
boundary conditions (Theorem 3.2).

The space V() is complete, being a closed subspace of H(Q); thus there
exists v € V() such that

vl — v in HY(Q),

and the limit v satisfies [e;;(v)|o,0 = limy_ |6i||j(’vl)|()’g = 0; hence v =0
by Theorem 3.3. But this contradicts the relations ||[v!||1q =1 for all l > 1,
and the proof is complete. [



118 P. G. CIARLET

Letting ® = id shows that Theorems 3.2, 3.3, and 3.4 contain as special
cases the Korn inequalities and the linearized rigid displacement lemma in
Cartesian coordinates (see, e.g., Duvaut and Lions (1972)).

4. Inequality of Korn’s type on a general surface

The theory of linearly elastic shells leads to ‘two-dimensional’ models, i.e.,
that are defined in terms of curvilinear coordinates of the middle surface
of the shell. The objective of Sections 4 to 6 is to show that inequalities
of Korn’s type on a surface can be established in terms of its curvilinear
coordinates. As we shall see, such inequalities play a fundamental role in es-
tablishing the existence and uniqueness of solutions to such two-dimensional
shell equations as the Koiter, flexural, and membrane ones. They also play
a crucial role in the asymptotic analysis of the three-dimensional equations
that justifies such two-dimensional models.

While a three-dimensional domain in R? is unambiguously defined by
a single tensor field, the metric tensor field (up to rigid deformations, of
course) of a surface instead requires two tensor fields for its definition: the
metric tensor field again and in addition the curvature tensor field, also
called the first and second fundamental forms of the surface.

An inequality of Korn’s type on a general surface can then be estab-
lished. In essence, it states that, for a general surface S, the L2-norm of
the linearized change of metric tensor, plus the L2-norm of the linearized
change of curvature tensor (associated with displacement fields of S vanish-
ing together with the normal derivative of their normal component along a
given portion, with length > 0, of the ‘boundary’ of S) is equivalent to the
(H! x H' x H?)-norm of these fields, expressed here in curvilinear coordin-
ates (both tangential components of the displacement fields are in H! and
their normal components are in H?); cf. Theorem 4.4.

To begin with, we briefly recall some basic results on the differential geo-
metry of surfaces in R?; for references, see, e.g., Stoker (1969), Klingenberg
(1973), do Carmo (1976), Berger and Gostiaux (1992), Sanchez-Hubert and
Sanchez-Palencia (1997), or Ciarlet (2000, Sections 2.1 to 2.5). Latin indices
or components vary as before in the set {1,2,3}; in addition, Greek indices
(except v in 0,) or exponents (except €) vary in the set {1,2}, and the
summation convention now applies to both kinds of indices and exponents.

Let w be a two-dimensional domain with boundary =, let y = (yo) de-
note a generic point in w, let 9, = 9/0y, and dnp = 0%/0y,0ys, and
let an injective mapping @ € C3(w;R3) be given such that the two vectors
a(y) := 0,0(y) are linearly independent at all points y € @. They then
form the covariant basis of the tangent plane to the surface S := 0(w) at
the point 8(y), while the two vectors a®(y) of the tangent plane defined by
the relations a®(y) - ag(y) = ¢F form the contravariant basis of the tangent
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plane at 6(y) (65 designates the Kronecker symbol). Let

_ ey Nas(y)
ai(y) Aax(y)l

then the vectors a’(y) form the contravariant basis at the point 8(y) € S.
The mapping 0 : @ — R3 being in particular injective, any point 7 of the
surface S = 0(w) is the image of a well-defined point y in the set @w. The
two coordinates y, of y then constitute the curvilinear coordinates of .
The metric tensor, or first fundamental form, of the surface S is defined
by its covariant components

a’(y)

(a8 = Qg - Ag = G3q,
or by its contravariant components
a®? = a® - af = a’
(we omit the explicit dependence on y € w when no confusion should arise).
Note that the determinant
a = det(aqp)

is everywhere > 0 in @ since the symmetric matrix (aqg) is positive definite
in w. The area element along S is \/a dy.

The curvature tensor, or second fundamental form, of S is defined by its
covariant components

bog = a3 - 0pag = —0,a3 - ag = bg,,
or by its mized components
b = a by,
The Christoffel symbols
Iog:=a’ - 0aag =T%,
are used for computing the functions
Ngja = Oatg — Lopne  and  n3ja8 := Japnz — L'g30:ms3,

which are instances of first-order and second-order covariant derivatives of
a vector field n;a* defined over the surface S, or for computing the functions

Bla == 0abj + 0,05 + I'g 57,
which are instances of first-order covariant derivatives of the curvature tensor
of S, defined here by means of its mixed components.
The two-dimensional Koiter equations for a linearly elastic shell, which

have been proposed by Koiter (1970), take the following form. The un-
knowns are the covariant components (7 ;- : w — R of the displacement field
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iKai : W — R3 of the middle surface S = 8(w) of the shell; {5 = (G x)
satisfies
(i € Vi(w) = {n = () € H'(w) x H'(w) x H*(w) :
i = dyn3z = 0 on o},

3
[ {50 ©rvantm) + 5 a7 por (€Y pastn)  Vady
= / prmiv/ady

(0, denoting the outer normal derivative operator along «y) for all m = (7;) €
Vi (w); 7o is a subset of v with length v9 > 0; 2e > 0 is the thickness of
the shell;

aaﬁm‘,e = 4>‘€M€
P + QNE
denote the contravariant components of the two-dimensional elasticity tensor
of the shell, A* and p° being the Lamé constants of the elastic material con-
stituting the shell; the given functions p* € L?(w) account for the applied
forces. Finally, v,3(n) and pas(n) denote the covariant components of the
linearized change of metric and linearized change of curvature tensors of S:

aaﬁaa‘r + QME (aaaaﬁ‘r + aom‘aﬁa)

1
7015("7) = 5(77045 + nﬂ|a) - boz6773
1
= 5(‘96% + 0ang) — I3aM0 — bapns,

Pas(M) = N3jap — babosns + bonsg + D5ria + bjlamr
= Oapm3 — Lap0ons — bobopns
+b2. (010 — Lhenir) + b5(0ans — L'orns)
+(8abg + F;C,bg — Fgﬁb;)m-.

These functions play a fundamental role in linearized shell theory. As
we shall see, they systematically appear in the linear two-dimensional shell
equations later justified in this article!

Their interpretation, which is thus crucial for the understanding of these
equations, is the following. Given an arbitrary displacement field n;a’ of the
surface S = 0(w) with sufficiently smooth covariant components 7; : W — R,
let

aa(n) := 8a(6 +m;a’) and as(n) := ﬁgg 2 Zi%

denote the vectors of the covariant bases attached to the ‘deformed’ surface
(0 + mia')(w) associated with this displacement field. Since the vectors
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a, = 0,0 are linearly independent in @ by assumption, so are the vectors
a,(n) provided the fields n = (n;) are sufficiently small (e.g., with respect
to the norm of the space C!(w;R?)); hence the vector as(n) is well defined
for such fields. The following interpretation is thus legitimate, because it
only pertains to the linearized theory ‘around n = 0’.

Let

aas(M) = aa(n) -ag(n) and bap(n) := az(n) - daas(n)

denote the covariant components of the metric and curvature tensors of the
deformed surface (6 + n;a’)(w). Then

1 lin
'Yaﬁ(n) = 9 [aaﬁ(n) - aaﬁ] )
paﬁ(n) = [baﬁ(n) - baﬁ]hna
where [- - -] denotes the linear part with respect to n = (1;) in the expres-
sion [---] (for a proof, see Ciarlet (2000, Theorems 2.4-1 and 2.5-1)). The

components v,3(n) and pa3(n) are thus aptly called those of the ‘linear-
ized’, ‘change of metric’ and ‘change of curvature’ tensors associated with
the displacement field n;a’ of the surface S.

Koiter’s equations are of paramount importance in engineering practice,
as they are very often used in numerical simulations of shell structures. They
are further studied, and in particular fully justified, in Section 11.

As is easily seen (see e.g. Bernadou, Ciarlet and Miara (1994, Lemma 2.1),
or Ciarlet (2000, Theorem 3.3-2)), there exists a constant ¢, = ce(w, 0, u°)
such that

D ol < cea™ T (Y)tortag
a?ﬁ

for all y € @ and all symmetric matrices (t,3) and there exists a constant
ap such that a(y) > ap > 0 for all y € w. Establishing the existence and
uniqueness of a solution to this variational problem by the Lax—Milgram
lemma thus amounts to establishing the existence of a constant ¢ such that

1/2
{ S el + H?BH%,W} < { S has B+ 3 \paﬁmnaw}
a o, a,f

for all m € Vg (w).

The objective of this section consists in showing that such an inequality
of Korn’s type indeed holds for a general surface (Theorem 4.4).

As is readily checked, the same inequality of Korn’s type on a surface
also provides an existence and uniqueness theorem for the two-dimensional
equations of a linearly elastic ‘flexural’ shell. These equations, which will
be fully justified in Section 10 through an asymptotic analysis of the three-

1/2
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dimensional solutions under the assumption that the space
Vi) :={n € Vk(w) : 7a(n) = 0 in w}

does not reduce to {0}, consist in finding the solution ¢ = (¢7) of the
following variational problem:

CE € VF(w),
53

3 / a7 por (CF) pap(m)Vady = / P mivady
w w
for all m = (n;) € Vp(w).

In Section 3, we established ‘three-dimensional’ Korn inequalities, first
without (Theorem 3.2), then with (Theorem 3.4), boundary conditions (the
second one depending on a three-dimensional linearized rigid displacement
lemma; cf. Theorem 3.3). Both inequalities involved the covariant compon-
ents e;|;(v) of the three-dimensional linearized change of metric tensor.

But while only one tensor, the metric tensor, is attached to a three-
dimensional domain in R3, two tensors, the metric and curvature tensors,
are attached to a surface in R3. It is thus natural to likewise establish in-
equalities of Korn’s type on a surface, first without (Theorem 4.1), then
with (Theorem 4.4), boundary conditions (the second one again depending
on a linearized rigid displacement lemma, this time on a surface; c¢f. The-
orem 4.3), such inequalities now involving the covariant components v,5(n)
and po3(n) of both its linearized change of metric tensor and linearized
change of curvature tensor.

We shall establish that these inequalities are valid for a ‘general’ surface
S = 6(w), that is, corresponding to a general mapping 0 (except that €
should be sufficiently smooth; ‘less smooth’ mappings @ are considered in
Section 5). In other words, no restriction is imposed on the ‘geometry’ of S
(in contrast, such a restriction holds for the inequality of Korn’s type that
will be established in Section 6).

The linearized rigid displacement lemma (Theorem 4.3) and the inequality
of Korn’s type on a general surface (Theorem 4.4) were first established by
Bernadou and Ciarlet (1976). A simpler presentation, which we follow here,
was then proposed by Ciarlet and Miara (1992b) (see also Bernadou, Ciarlet
and Miara (1994)). Its first stage consists in establishing an inequality of
Korn’s type ‘without boundary conditions’, again as a consequence of the
Lemma of J. L. Lions (as in dimension three; ¢f. Theorem 3.2).

Theorem 4.1: Inequality of Korn’s type ‘without boundary con-
ditions’ on a general surface. Let w be a domain in R? and let
0 € C3(w;R3) be an injective mapping such that the two vectors a, = 0,0
are linearly independent at all points of w. Given n = (n;) € H'(w) x
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H'(w) x H?(w), let

s ) = { (@t + 0uts) ~ T b} € L),
pap(n) = {Bapnz — T 50613 — b3bspna

+ 08, (9pne — T'Gonr) + b5 (Oanr — I3n0)

+ (0abf + T7,0% — TZ307 )0, } € L (w)

denote the covariant components of the linearized change of metric and
linearized change of curvature tensors associated with the displacement field
n;a’ of the surface @(w). Then there exists a constant ¢y = cp(w, @) such
that

1/2
(St i
“ 1/2
< Co{ Z Nalw + Im3ll7 0 + Z Nap (M3 0 + Z [pap(m ‘Ow}
a a,B

for all n = (;) € H'(w) x H'(w) x H?(w).
Proof. (i) Define the space
= {n=(m) € L*(w) x L*(w) x H' () :
Yap(M) € L2 (@), pap(n) € L*(w)}.

Then W g (w) is a Hilbert space when equipped with the norm ||-||X defined by

1/2
Inl5 = { > Maldw + 3l 0+ rasM)IF . + Z |Pas(m \OM} -
a a?ﬁ

The relations “y,5(n) € L*(w)’ and ‘pas(n) € LQ(w)’ appearing in the
definition of the space Wk (w) are to be understood in the sense of distri-
butions. They mean that n = (1;) € L?*(w) x L?*(w) x H'(w) belongs to
W (w) if there exist functions in L%*(w), denoted by vas(n) and pas(n),
such that, for all ¢ € D(w),

1 loa
/vaﬁ(n)wdw = —/ {2(nﬂ<9a<p+naaﬁso) +Tosnop + bams@} dw,

/ pap(Mypdw = — / {0an3080 + ' 50sm30 + b bepnsp

+ 00, (100 + T5onrp) + b5(170a + Tornop)
+ ((%Csz + 10005 — Tagbs )nTgo} dw.
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Consider a Cauchy sequence (1*)2°, with elements n* = (nf) € Wk (w).
The definition of the norm || - ||X shows that there exist 7, € L?*(w),n3 €
HY(w),Yap € L*(w), and pap € L*(w) such that

nk — na in L3 (w), ns — n3 in H'(w),
’Vaﬁ(nk) — YaB in LQ(w)v pa,@(nk) - Pap in LQ("‘))

as k — oo. Given a function ¢ € D(w), letting k¥ — oo in the relations
[, Vasm)edw = -+ and [ pag(n*)pdw = --- then shows that v.g =
’Yaﬁ(n) and pap = paﬂ(n)'

(ii) The spaces Wk (w) and H'(w) x H'(w) x H?(w) coincide.

Clearly, H'(w) x H'(w) x H*(w) C Wk (w). To prove the other inclusion,
let n = (n;) € Wk (w). The relations

1 g
cas(n) = 5(Gatls + Iptla) = Yas(n) + om0 + bapiis

then imply that ea3(n) € L*(w) since the functions T and by are con-

tinuous on w (in fact, even continuously differentiable; recall that we assume
0 € C3(w;R?)). Therefore

OpNe € H Y (w),
95(05ma) = {0500 (M) + Dseap(n) — daepo(n)} € H™H(w),

since § € L?(w) implies 0,0 € H!(w). Hence 9,7, € L?(w) by the Lemma
of J. L. Lions (Theorem 3.1), and thus 7, € H'(w).

The definition of the functions po3(n), the continuity over @ of the func-
tions I' 5, b3, b7, and O,bf, and the relations pag(n) € L?(w) then imply
that d,pm3 € L?(w), and hence that 13 € H?(w).

(iii) Inequality of Korn’s type without boundary conditions.

The identity mapping ¢ from the space H'(w) x H'(w) x H?*(w) equipped
with its product norm n = (n;) — {>_, H%Hiw + H%H%w}lﬂ into the space
W (w) equipped with || - |X is injective, continuous, and surjective by (ii).
Since both spaces are complete (cf. (i)), the closed graph theorem then
shows that the inverse mapping ¢! is also continuous or, equivalently, that
the inequality of Korn’s type without boundary conditions holds. O

In order to establish an inequality of Korn’s type ‘with boundary condi-
tions’, we have to identify classes of boundary conditions to be imposed on
the fields n = (1;) € H'(w) x H'(w) x H?(w) in order that we can ‘get rid’ of
the norms |740. and ||n3]|1w on the right-hand side of the above inequality,
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that is, situations where the seminorm

1/2
n=(n)— { > e+ |paﬁ(n)|3,w}
wp o

becomes a norm, which should in addition be equivalent to the product norm.

To this end, we begin by establishing (as in dimension three; ¢f. Theorem
3.3) a linearized rigid displacement lemma (Theorem 4.3), which provides in
particular one instance of boundary conditions implying that this seminorm
becomes a norm; as stated here, this lemma is due to Bernadou and Ciarlet
(1976, Theorems 5.1-1 and 5.2-1).

The elegant proof of this lemma given here is based on an idea of Chapelle
(1994). Tt relies on the preliminary observation that a vector field n;a’ on
a surface may be ‘canonically’ extended to a three-dimensional vector field
v;g*, in such a way that all the components e;|;(v) of the associated three-
dimensional linearized change of metric tensor have remarkable expressions
in terms of the components v,3(n) and pag(n) of the linearized change of
metric and linearized change of curvature tensors of the surface field.

Theorem 4.2: ‘Canonical’ three-dimensional extension of a surface
vector field. Let the assumptions on the mapping 6 : @ — R3 be as in
Theorem 4.1 and let

_ ai(y) ANas(y)
az(y) = ————— .
la1(y) A az(y)]
There exists eg > 0 such that the mapping © : @ x [, gg] — R? defined by
O(y, 3) := 0(y) + wsas(y) for all (y,x3) € W x [—e0, 0]
is a C!-diffeomorphism. With any vector field n;a’ : @ — R3 with covariant
components 7, in H L(w) and n3 € H*(w), let there be associated the vector
field v;g* : Q@ — R? defined by
viy, 3)9"(y, x3) = mi(y)a' (y) + w3Xa(y)a® (y)

for all (y,x3) € Q, where Q := wx] — g, go[, the vectors g’ form the con-
travariant basis associated with the mapping © (Section 3), and

Xo = _(8(1773 + bgno—)'

Then the covariant components v; of the vector field v;g* are in H'(Q)
and the covariant components e;;(v) € L?(2) of the associated linearized
change of metric tensor are given by

eq8(V) = Yap(n) — T3pap(n)
2
X
75 {62080 () + U (m) — 25070 ()}
eij3(v) = 0.
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Proof. (i) Preliminaries. The mapping ©® : @ x [—¢,¢] — R3 defined
above is a Cl-diffeomorphism if ¢ > 0 is sufficiently small; ¢f. Ciarlet (2000,
Theorem 3.1-1). Since

Oqa3 = —bla,
by Weingarten’s formula, the vectors of the covariant basis associated with
the mapping ® = 0 + x3ag are given by

9o = Qa — x3bg¢aa and g3 = as.

(ii) Given functions 74, X, € H'Y(w) and 13 € H?(w), let the vector field
v;g" : Q — R3 be defined by

vig' = ma' + w3 Xaa®
(in other words, we momentarily ignore the specific forms of the functions

X, indicated in the theorem). Then the functions v; are in H'(Q2) and
the covariant components e;;(v) of the linearized change of metric tensor

associated with the field v;g* are given by
1
eaHﬁ(’U) = 5 {(7704|ﬁ + 77/6|a) - baﬁni’)}

1 1 L.
+x3{2(Xa|g + Xgja) = 500 (1018 = bso3) = 50500 — bm”?’)}

2
xr
F 2~ 150

1 g
Cal3(v) = 5(Xa + Jatis + 03n),

63”3(’0) = 0.
The assumed regularities of the functions 7; and &, imply that
vi = (v;g’) - g; = (ma’ + 23X0a®) - g; € H'(Q),
since g; € C'(Q2;R3). The stated expressions for the functions e|j(v) are
obtained by simple computations, based on the relations
1
2

(the vectors g; having been computed in (i)).

e (v) = = (vyy; +vjy0) and vy; = {0;(vrg®)} - g4

(iii) When X, = —(0ans + b37,), the functions e;;(v) found in (ii) take
the expressions stated in the theorem.

We first note that X, € H'(w) (since b € C'(@)) and that ey3(v) = 0
when X, = —(0am3 + b%ns). It thus remains to find the explicit forms of
the functions ey 3(v). Replacing the functions X, by their expressions and
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using the symmetry relations b7|g = bg|a, we find that

%(Xa\ﬁ + Xpja) — %bg(naw —bpon3) — %bﬁ(nﬂa — barn3)
= —M3jap — BaNo|s — Vglria — bjlanr + bQbopns,
that is, the factor of 3 in e g(v) is precisely equal to —pag(n). Finally,
—bgXs18 — bpXr|a

= b3 (n3180 + by anr + banrp) + b (M3jar + 07 [atle + b7151a)

= bo(pso (M) — bj1rie + b3brans) + b(par (M) — b3Ms|r + baborns)

= b3ppo (1) + bjpar(n) — 2006570+ (n),
that is, the factor of 23/2 in e, 5(v) is precisely the combination of functions

Yo (M) and pas(n) stated in the theorem. O

We now establish a linearized rigid displacement lemma on a general sur-
face. ‘Linearized’ reminds us that only the linearized parts of the change of
metric and change of curvature tensors are required to vanish. Thanks to
Theorem 4.2 this lemma becomes a direct corollary to the ‘three-dimensional’
linearized rigid displacement lemma (Theorem 3.3), to which it may be prof-
itably compared.

Part (a) of the next theorem is a linearized rigid displacement lemma
without boundary conditions, while part (b) is a linearized rigid displacement
lemma with boundary conditions.

Theorem 4.3: Linearized rigid displacement lemma on a general
surface. Let the assumptions on the mapping @ : @ — R® be as in
Theorem 4.1.

(a) Let n = (5;) € H'(w) x H'(w) x H*(w) be such that
’Ya/j(??) = paﬁ(’l]) =0 in w.

Then the vector field n;a’ : @ — R3 is a ‘linearized rigid displacement’ of the
surface S = @(@), in the sense that there exist two vectors ¢,d € R? such
that

ni(y)a'(y) = ¢+ d A @(y) for all y € w.
(b) Let o be a dy-measurable subset of v = dw that satisfies
length v9 > 0.

Then
n=(n) € H'(w) x H'(w) x H*(w),
ni=0m3=0o0n7v, p=n=0Iinw.
Yap(M) = paps(n) =0in w
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Proof. Let the set Q = wx] — g,¢0[ and the field v = (v;) € H(Q) be
defined as in Theorem 4.2. By this theorem,

Ya8(M) = pas(M) =0 in w = ei”j(v) =01in Q,

and thus, by Theorem 3.3(a), there exist two vectors ¢, d € R? such that

vily, 23)g' (y, 23) = ¢+ d A {0(y) + z3a3(y)} for all (y,z3) € Q.
Hence

ni(y)a’ (y) = viy, 23)g" (4, 73)|as=0 = €+ d A B(y) for all y € T,
and part (a) is established.

If in addition 7; = d,m3 = 0 on o, then Xy = —(dan3 + bZns) = 0 on o,
since 13 = d,m3 = 0 on =y implies d,n3 = 0 on ~p; consequently,
vi = (v;g’) - g; = (@ + 23X,a%) - g; = 0 on T := 70 X [—€0, £0)-

Since area Iy > 0, Theorem 3.3(b) implies that v = 0 in €, hence that
11 =0 o0nw. U

We are now in a position to prove an inequality that plays a fundamental
role in the analysis of linearly elastic shells, in particular in establishing the
existence and uniqueness of the solution to the two-dimensional shell equa-
tions of W. T. Koiter and of the solution to the two-dimensional equations
of a ‘flexural’ shell, as already observed at the beginning of this section.
This inequality is due to Bernadou and Ciarlet (1976); see also Bernadou,
Ciarlet and Miara (1994).

Theorem 4.4: Inequality of Korn’s type on a general surface. Let
the assumptions on the mapping 0 : @ — R> be as in Theorem 4.1, let o
be a dy-measurable subset of v = Jw that satisfies

length vg > 0,
and let the space Vi (w) be defined by
V() ={n= () € H'(w) x H'(w) x H*(w) : n; = 13 = 0 on 7o}

Then there exists a constant ¢ = ¢(w, 70, 8) such that

1/2
{ > lnallf, + HngHg,w} < C{ > asMEw + \paa(n)lg,w}
a a,B o,

for all n € Vg (w).
Proof. Let

1/2

1/2
1720l £ () x F () x 2 (0) = {Z Inall3. + H773H%,w} ;

«
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and let

1/2
nl5 = { > asFe + \paﬁ(n)lg,w} :
a,8

a?/g

If the stated inequality is false, there exists a sequence (n* )72, of functions
n* € Vi (w) such that

17" 1t ) x F1 ()< E2() = 1 for all k and Jim n"5 = 0.

Since the sequence (n%)% , is bounded in H'(w) x H'(w) x H%(w), there
exists a subsequence (n!)$2, that converges in L?(w) x L?(w) x H!(w) by
the Rellich—-Kondrasov theorem; furthermore, since lim;_, 4, \nl|f = 0, each
sequence (7,5(n))%, and (pas(n')), also converges in L*(w) (to 0, but
this information is not used at this stage). The subsequence (n')$2, is thus

a Cauchy sequence with respect to the norm
1/2
2 }
0,w ’

and hence with respect to the norm || - || g1(w)x 1 (w)x H2(w) Dy Korn’s in-
equality without boundary conditions (Theorem 4.1).

The space V i (w) being complete as a closed subspace of H'(w)x H!(w) x
H?(w), there exists n € Vg (w) such that

n = () — {zmm il 3 sl + 3 pan)
a a7ﬁ a?/B

n' - nin H(w) x H'(w) x H*(w),
and the limit 7 satisfies

Mg (Mo = lim Yas(m)ow = 0,
|P04ﬂ(77)|0,w = llggo |Pozﬁ(77l)|07w =0.

Hence n = 0 by Theorem 4.3.
But this contradicts the relations Hnl||H1(w)><Hl(w)><H2(w) =1foralll>1,
and the proof is complete. O

It has recently been shown by Ciarlet and Mardare (2000, 200x) that
the canonical three-dimensional extension of a surface vector field used in
Theorem 4.2 can be further put to use, to the extent that it provides a
new proof of the inequality of Korn’s type on a general surface itself (The-
orem 4.4), directly as a corollary to the three-dimensional Korn inequality
in curvilinear coordinates (Theorem 3.4).
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For another, ‘intrinsic’, approach to inequalities of Korn’s type on sur-
faces, see Delfour (200x).

5. Inequality of Korn’s type on a surface with little
regularity

As shown by Blouza and Le Dret (1999), the regularity assumptions made

in the previous section on the mapping @ and on the field n = (;), in both

the linearized rigid displacement lemma and the inequality of Korn’s type

(Theorems 4.3 and 4.4), can be substantially weakened.

This improvement relies on the observation that the covariant components
of the linearized change of metric and change of curvature tensors, that is,

1
7046(77) = 5(857701 + 804776) - Fgﬁno - ba6773
and

paﬁ(n) = 0OapT3 — ngaaﬁs - bgbaﬁni’)
+ bg(aﬁna - 1730777) + b/Ta (Oattr — Torn0)
+ (aabg + Fgobg - Fgﬁb;)n‘ra

can be also written as
1, - ~ - .
Yap(n) = 5(05M - @a + 0anl - ap) = Yap (M)
and
Pap(M) = (Oapn — L'3300M) - a3 =: pas(n),
in terms of the field
n = Th'ai-

The interest of the new expressions 7,3(17) and pas(7) is that they still
define bona fide distributions under significantly weaker smoothness assump-
tions than those made so far, that is, 8 € C3(w;R?) and n = (1;) € H'(w) x
H'(w) x H%*(w). More specifically, it is easily verified that Y,3(1) € L*(w)
and pop(n) € HH(w) if @ € W2®(w; R3) and i € H' (w).

Note that, to avoid any confusion, we intentionally employ the new nota-
tion Yo3(7N) and pas(n).

Using this observation, Blouza and Le Dret (1999, Theorem 6) first es-
tablish the following extension of Theorem 4.3.

Theorem 5.1: Linearized rigid displacement lemma on a surface
with little regularity. Let w be a domain in R? and let 8 € W2°°(w;R?)
be an injective mapping such that the two vectors a, = 9,0 are linearly
independent at all points of @.
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Given 17 € H'(w), let the distributions 7.5(7) € L?(w) and pas(n) €
H~1(w) be defined by

(1) 1= 50571+ - ag),
Pap(M) = (Oapn —Top0om) - a
Let 7 € HY(w) be such that
Yap(M) = pap(n) =0 in w.

Then 7 is a ‘linearized rigid displacement’ of the surface S = 0(w), in the
sense that there exist two vectors ¢, d € R? such that

n(y) =¢+dA8(y) for all y € @. O

Blouza and Le Dret (1999, Lemma 11) then proceed to establish the fol-
lowing variant of Theorem 4.4, which, for convenience, is stated here with
boundary conditions corresponding to a shell that is simply supported along
its entire boundary, that is, 77 = 0 on ~.

Boundary conditions of clamping, as considered in Theorem 4.4, can also
be handled via the present approach, provided they are first re-interpreted
so as to make sense for vector fields 77 that only satisfy n € H'(w) and
OapM - a3 € L?(w); cf. Blouza and Le Dret (1999, Section 6).

Theorem 5.2: Inequality of Korn’s type on a surface with little
regularity. Let the assumptions on the mapping 0 be as in Theorem 5.1
and let the space V K( ) be defined by

Vi (w) = {7 € Hy(w) : 0ap7 - a3 € L*(w)}.

Then there exists a constant ¢ such that

1/2
{Hﬁu%,w + Z |8015/ﬁ ) 0,3‘%#)}

a,pB
1/2
Sc{Z’m B+ X st m} for all 7 € V' (1),
a,B

where the distributions ¥,3(n7) and p.g(7) are defined as in Theorem 5.1
(note that pup(n) € L*(w) if 7 € Vie(w)). O

This theorem establishes as a corollary the existence and uniqueness of
the solution to the two-dimensional Koiter equations for a simply supported
shell whose middle surface has little regularity, once these equations are
re-written in terms of the expressions Y,3(n) and pag(n); cf. Section 11.3.
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6. Inequality of Korn’s type on an elliptic surface

The two-dimensional equations of a linearly elastic ‘membrane’ shell take
the following form. The unknowns are the covariant components (; : w — R
of the displacement (fa’ : @ — R? of the middle surface S = (w) of the
shell, and ¢° := ((}) satisfies

¢CeVy(w ) = Hj(w) x Hj(w) x L*(w),
/ a7 1 (C)Vap (M )fdy—/pi’ani\/&dy,

for all § = (n;) € Vr(w), where 2¢ > 0 is the thickness of the shell,
AN s
A€ + 2M€

aaﬁaT,a — aaﬁaar + 2M8 (aaaaﬂr + aoc’raﬁa)
denote (as in Section 4) the contravariant components of the two-dimensional
elasticity tensor of the shell,

1 o
70:5(77) = 5(6,377& + 811775) - Faﬁna - ba,8773

denote (again as in Section 4) the covariant components of the linearized
change of metric tensor of S, and the given functions p*¢ € L?(w) account
for the applied forces.

These equations will be further studied in Section 8, where it will be shown
in particular that they can be fully justified through an asymptotic analysis
of the three-dimensional solutions.

As already noted in Section 4, there exist constants ¢, and ag such that

Z ’taﬁ‘z S CeaaﬁaT7a(y)taTtaﬁ
a?ﬁ

for all y € @ and all symmetric matrices (¢,3) and such that a(y) > ag > 0
for all y € w. Establishing the existence and uniqueness of a solution to
the above variational problem by the Lax—Milgram lemma thus amounts to
proving the existence of a constant cp; such that

1/2 1/2
{ZH”QH%M 2, } < CM{Z’PyOéﬁ ‘Ow}

for all p = (n;) € Vyr(w).

The objective of this section, based on Ciarlet and Lods (1996a) and Ciar-
let and Sanchez-Palencia (1996), is to find sufficient conditions, essentially
bearing on the ‘geometry’ of the surface S, guaranteeing that such an in-
equality of Korn’s type holds. It is also worth noticing that the justification
alluded to above of these two-dimensional ‘membrane’ shell equations from
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three-dimensional elasticity is performed under precisely the same assump-
tions on the geometry of S, as we shall see in Section 8.

We follow the usual pattern, that is, we begin by proving an inequality of
Korn’s type without boundary condition, which remarkably holds for ‘arbit-
rary’ geometries, although it only involves the linearized change of metric
tensor (compare with Theorem 4.1).

Theorem 6.1: Second inequality of Korn’s type without boundary
conditions on a general surface. Let w be a domain in R? and let
0 € C%(w;R3) be an injective mapping such that the two vectors a, = 0,0
are linearly independent at all points of w. Given n = (1;) € H'(w) x
H'(w) x L*(w), let

1
1) = { 5@t + 0ats) = Tgtr — b € 12(0)

denote the covariant components of the linearized change of metric tensor
associated with the displacement field n;a’ of the surface S = 6(w). Then
there exists a constant ¢y = ¢o(w, ) such that

1/2
{ZH%H%,WH%%,W} {zrmmzm \ow}
«

for all § = (1;) € H'(w) x HY(w) x L?(w).

1/2

Proof. The proof is analogous to that of Theorem 4.1 and, for this reason,
is only sketched. It relies on the following steps. First, the space

w) == {n=(m) € Lw) : yap(n) € L*(w)}

becomes a Hilbert space when it is equipped with the norm |- || defined by

1/2
||"7||M {ZMl +Z"7aﬁ |0w} .

Next, the two spaces W s (w) and Hl(w) x H'(w) x L?(w) coincide, thanks
again to the identities
9apNo = Oaeps(N) + 0geac(n) — dseap(n)

and to the Lemma of J. L. Lions (Theorem 3.1).
Finally, the closed graph theorem shows that the identity mapping from
the space H'(w) x H'(w) x L?(w) equipped with the product norm

1/2
n=(m)— { D lInallf o + Inzlg,w}
(e}
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onto the space Wy (w) equipped with the norm || - || has a continuous
inverse. Hence the stated inequality holds. (|

The next step consists in identifying sufficient conditions allowing the
‘elimination’ of the norms |n;|o. on the right-hand side of the above in-
equality of Korn’s type. Whether it be for the three-dimensional Korn in-
equality in curvilinear coordinates (Theorem 3.4) or for the inequality of
Korn’s type on a general surface (Theorem 4.4), the corresponding elim-
inations simply resulted from imposing ad hoc boundary conditions on the
displacement fields, in such a way that a linearized rigid displacement lemma,
with boundary conditions holds (see Theorems 3.3(b) and 4.3(b)).

In other words, we are facing the problem of finding boundary conditions
such that the seminorm

1/2
2
O,w }

n=(n;) — { > as()
B

becomes a norm for the displacement fields 7;a’ that satisfy them. Since 73
is only in L?(w) and 7, is in H'(w), the only possibility consists in trying
boundary conditions of the form

Na = 0 on yg C 7y, with area 9 > 0.

It then turns out that such a linearized rigid displacement lemma does
hold, but only for special geometries of the surface S and special subsets
0(~o) of the boundary of S. In this direction, we refer to Sanchez-Palencia
(1993), Sanchez-Hubert and Sanchez-Palencia (1997), Lods and Mardare
(1998a), Mardare (1998¢), and Slicaru (1998), who have identified various
situations of interest where this lemma holds.

But even though such a linearized rigid displacement lemma often holds,
it very seldom implies that the norm

1/2
- {z mﬁmnaw}
a7ﬁ

is equivalent to the norm

1/2
n— { D lnallie + \ns\g,w} :
(0%

More precisely, we shall prove (in Theorem 6.3) that, under ad hoc reg-
ularity assumptions on the mapping 6 and on the boundary -y, these two
norms are equivalent if v = vy and the surface S is elliptic according to the
definition given below. Conversely, Slicaru (1998) has shown the remarkable
result that, even under the ‘minimal’ regularity assumptions ‘@ € C?(@w;R?)
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and v Lipschitz-continuous’, the same sufficient conditions are also necessary
for the equivalence of the norms, which thus very seldom occurs indeed!

We now prove the stated ‘linearized rigid displacement lemma’, directly
under the assumptions (79 = v and S elliptic) that will eventually lead to
the equivalence of norms. We begin with a definition.

Let a surface S = 0(w) be given, where 8 € C?(w;R?) is an injective
mapping such that the two vectors a,, are linearly independent at all points
of @. Then S is elliptic if the symmetric matrix (bo3(y)) formed by the
covariant components of the curvature tensor of S is positive, or negative,
definite at all points y € @, or equivalently, if there exists a constant ¢ such
that

¢ >0 and |bag(y)§2¢’| = ¢ €7,

for all y € w and all (£€*) € R%2. Geometrically, this means that the Gaussian
curvature of the surface S is everywhere > 0, or equivalently, that the two
principal radii of curvature are of the same sign at each point of S (for
details about these classical notions, see, e.g., Ciarlet (2000, Section 2.2)).
A portion of an ellipsoid provides an instance of elliptic surface.

In the next proof of the theorem, analytic functions of two real variables
in an open subset of R? are considered; we refer to Dieudonné (1968) for a
particularly elegant treatment of analytic functions of any finite number of
real or complex variables.

Theorem 6.2: Linearized rigid displacement lemma on an elliptic
surface. Let there be given a domain w in R? and an injective mapping
0 € C>1(w; R3) such that the two vectors a, = 9,0 are linearly independent
at all points of @ and such that the surface S = 6(w) is elliptic. Then

n=(n;) € Hy(w) x Hj(w) x L*(w),
Yap(n) =0 inw

Proof.  We give the proof under the additional assumptions that the bound-
ary 7 is of class C? and that the components of the mapping @ are restrictions
to @ of analytic functions in an open set w’ C R? containing @. We refer
to Lods and Mardare (1998a) for a proof (then more ‘technical’) under the
more general assumptions stated in the theorem. An earlier version of this
lemma is due to Vekua (1962), who proved it under the assumptions that
7 is of class C? and @ € W3P(w;R3) for some p > 1, using the theory of
‘generalized analytic functions’.

}:>n:0inw.

(i) We first note that establishing this implication is equivalent to proving
a uniqueness theorem, that is, n = (n;) = 0 is the only solution in the
space H'(w) x H'(w) x L?(w) of the linear system formed by the three
partial differential equations v,g(n) = 0 in w together with the two boundary



136 P. G. CIARLET

conditions (understood in the sense of traces) 7, = 0 on =, or, ‘in full’,
om —TI{ine —bung = 0in w,
%32771 + %aﬂh —I'fone — bizng = 0 in w,
Oam2 — 9o — bagnz = 0 in w,
m = 0on 7,
N2 = 0 on v.
(ii) Any solution n = (n;) € H} (w) x H}(w) x L*(w) of the system
Yap(n) =0in w and 1, =0 on 7
is in the space C'(@) x C}(@) x C°(@).
This regularity result relies on a crucial observation made by Geymonat
and Sanchez-Palencia (1991). The partial differential equations v,5(1) =0
in w constitute a first-order system that is ‘uniformly elliptic’ in the sense
of Agmon, Douglis and Nirenberg (1964). This means that there exists a

constant A > 0 such that (here and subsequently, we use the notation of
Agmon, Douglis and Nirenberg (1964))

AT P <Ly &) < A&l

for all y € w and & = (&) € R?, where
& 0 —bu(y)

L(y, &) := det %52 %51 —b12(y)

0 &  —ba(y)

The way the above matrix of order three is constructed from the equations
Ya3(n) = 0 should be clear; suffice it to specify that only the coefficients of
the partial derivatives of the highest order for each unknown (one for 7, and
zero for n3) are taken into account. The uniform ellipticity of the system
formed by the partial differential equations v,5(n) = 0 in w thus holds, since

1 bin(y) bi2(y)) [ &
L — T (f —
(y,€) 2(52 &1) <b21 (y) baz(y) —&
in the present case, and since the symmetric matrix (bog(y)) is either pos-

itive, or negative, definite at all points y € W by the assumed ellipticity of
the surface S.
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In addition, the ‘supplementary condition on L’ (which needs to be verified
only in two dimensions, as here) is also satisfied. The degree m of the
polynomial L with respect to & and & being two, the polynomial

T€C— L(y,&€+7n) €C

has exactly % = 1 root 7% with Im7% > 0, for all y € @ and all linearly
independent vectors £ = (&,) and 1 = (77,) in R?.

Finally, when 7, i.e., one of the two boundary conditions 7, = 0 on 7 is
appended to the equations v,3(n7) = 0 in w, the ‘complementary boundary
condition’ is also satisfied. Thus the polynomial 7 € C — (7 — 771) divides
the polynomials 7 — ¢(&; + 7m1) and 7 — ¢(&2 + 712) only if the constant ¢
vanishes.

It then follows from Agmon, Douglis and Nirenberg (1964, Theorem 10.5)
that, if v is of class C? and the coefficients of the uniformly elliptic system
Yap(m) = 0 are in C?*(w), any solution n € H'(w) x H'(w) x L*(w) of
Ya3(M) = 0 in w together with, for instance, 7 = 0 on 7 is in the space
H3(w) x H3(w) x H?(w). The assertion then follows from the continuous
embeddings H™(w) — C™ (W), m = 2,3.

(iii) ‘Local” uniqueness of the solution of the system
Yap(M) = 0in w and 7, = 0 on 7.

The assumed ellipticity of the surface S shows that there exists a constant
¢ > 0 such that |b11(y)| > ¢ for all y € w. Hence the unknown 73 may
be eliminated, for instance by means of the equation ~11(n) = 0. This
elimination shows that
1
b1

and that 7; and 7y are solutions of the reduced system

73 (Orm —TI'{1n,)

b b
—2281?71 + Oomy + 0112 — 2(F‘172 — 12F‘171>?70 = 0in w,
b1 b1

b b
—2201m1 + Do — ( %y — 2 ‘1’1)% =0inw,
b11 bll
71 = 0 on v,

n2 = 0 on 7.

Since the coefficients of this reduced system are analytic in ', since the
boundary « is of class C3 and is not a characteristic curve for this sys-
tem, as is easily verified by again using the assumed ellipticity of the sur-
face S, Holmgren’s Uniqueness Theorem (see, e.g., Courant and Hilbert
(1962, p. 238) or Bers, John and Schechter (1964, p. 47)) shows that ‘loc-
ally’, i.e., in a sufficiently small neighbourhood @ C w’ of any point 7 of ~,
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m = n2 = 0 is the unique solution in C'(&). Recalling that any solu-
tion 17 = (n;) of the ‘full’ system is such that n, € C'(w) by (ii), we have
thus reached the following conclusion. Given any point y € ~, there ex-
ists a neighbourhood W C w of y such that 7 = 0 is the only solution
n=(n) € H' (w) x H(w) x L?(w) in @ Nw of the ‘full’ system

Yop(M) =0inw and 1y =0o0n~.
(iv) ‘Global” uniqueness of the solution of the system
Yap(M) =0inw and 17, =0onn.

By a theorem of Morrey and Nirenberg (1957), any solution of a uniformly
elliptic system whose coefficients are analytic in w is analytic in w. Since n =
0 is an analytic solution, the Analytic Continuation Theorem for analytic
functions of several variables (see, e.g., Dieudonné (1968, Theorem 9.4.2))
thus shows that 1 = 0 is the only solution. O

We are now in a position to prove the main result of this section, due
to Ciarlet and Lods (1996a) and Ciarlet and Sanchez-Palencia (1996), who
provided two different proofs. Special mention must also be made of the
early existence and uniqueness theorem of Destuynder (1985, Theorems 6.1
and 6.5), obtained under the additional assumptions that the elliptic surface
S can be covered by a single system of lines of curvature and that the C°(@)-
norms of the Christoffel symbols of S are sufficiently small.

It is indeed remarkable that, if the surface S is elliptic and the tangential
components of the admissible displacement fields of S vanish over the entire
boundary of S, the L?-norm of the linearized change of metric tensor alone is
‘already’ equivalent to the (H! x H' x L?)-norm of these fields (compare with
Theorem 4.4; note, however, that the H2-norm of the normal components
that appears there in the inequality of Korn’s type on a general surface is
now replaced by the L?-norm).

Theorem 6.3: Inequality of Korn’s type on an elliptic surface. Let
the assumptions be as in Theorem 6.2. Then there exists a constant cp; =
ey (w, @) such that

1/2
{ZH”QH%M_'_ ’773 g,w} < CM{Z’fyaﬂ(n)‘(Q),w}
« a,f

for all m € V() := H(w) x H}(w) x L*(w).

1/2

Proof. (i) By the second inequality of Korn’s type without boundary con-
ditions on a general surface (Theorem 6.1), there exists a constant ¢y such
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that

1/2
17 &1 () x B (@) x L2 (w0) = { Z nallf o + \773|3,w}

«

1/2
. co{zm@ﬁzmg(nn%w}
i O‘7ﬁ

for all § € V;(w), since V(w) C HY(w) x HY(w) x L?(w). Hence it suffices
to show that there exists a constant ¢ such that
1/2

1/2
{ > |m|(2),w} < C{ > |’Va/6(77)’(2),w} for all n € Vi (w).
i a,fB

(ii) If the last inequality is false, there exists a sequence (n* )72, of functions
n* = (nF) € V() such that

1/2

1/2
{Z ‘Wﬂ%,w} =1 for all £ and len;O { Z mﬁ(n’“)%,w} =0.
i a,B

In particular, then, the sequence (nk)zo:l is bounded with respect to the

norm || - || g1 () x 51 (w) x L2 (w), thanks again to the second inequality of Korn’s
type of Theorem 6.1. Since any bounded sequence in a Hilbert space contains
a weakly convergent sequence, there exists a subsequence (nl)fil and an
element 7 = (n;) € Vr(w) such that

77la — 7)q In Hl(w) and 7751 — ) In LQ(w),
né —n3 in L?(w),

where — and — denote weak and strong convergence (the compact embed-
ding H'(w) € L?(w) is also used here).

(iii) Naturally, the difficulty rests with the subsequence (né)fil, which con-
verges only weakly in L?(w). Our recourse for showing that it in fact strongly
converges in L?(w) will be (cf. (iv)) the assumed ellipticity of the surface S;
but first, we prove that n = (n;) = 0. To this end, we simply note that

Mo — Nla 0 H'(w) and 7 — 03 in L?(0) = Yap(n') = 7ap(n) in L*(w),
on the one hand; since
Yap(n') — 0 in L*(w),
on the other, we conclude that v,3(n) = 0. Hence 7 = 0 by Theorem 6.2.
(iv) We next show that 1} — 0 in L?(w). The strong convergence

Yap(m') — 0in L?(w) and 7}, — 0 in L*(w)
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combined with the definition of the functions y,(n) implies the following
strong convergence:
oy —buny = {yu(') +in}  — 0in L2(w),
Do + 01y — 2b12y = {2712(n") + 2091} — 0 in L (w),
Oony — baanhy = {y22(n') + 115} — 0in L*(w).

As the function by; € C°(@) does not vanish in @ by the assumed ellipticity
of the surface S, we can eliminate 773 between the first and second, and
between the first and third, relations; this elimination yields

b
{6277[1 + Ornh — 2171231775} — 0in L?(w),

b
{ouh — 20wt | — 0 220)

Multiplying the first relation by dsn} and the second by 911}, then integ-
rating over w, we get

/ {(32771) + Dol Ol — 2 a1771(92771}(111 — 0,

b
/ {(%?ﬁazné — bjf(amll)z}dy — 0,

since each sequence (9,n})%°, is bounded in L?(w) (each sequence even
weakly converges to 0 in L?(w)). Subtracting the last two relations and
using the relation [ Dont Oymb dy = L, 011t Oamb dy, we thus obtain

b1z 2 1
R R .

and consequently

ol — 0 in L*(w),

since by1bag — (b12)? = det(bng) € CO(w) does not vanish in @ by the assumed
ellipticity of S. Hence

1 .
s = { oy — — (0} — bnné)} — 0 in L*(w).
b1 bi1

(v) The relations 7} — 0 in L?(w) established in parts (ii)—(iv) thus con-
tradict the relations {)_, ]nﬁ\%}w}lﬂ =1 for all /, and the proof is complete.
(|

When the surface S is elliptic, the covariant components 7, of the dis-
placement field vanish over the entire boundary -y, and the assumptions on
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w and O are as in Theorem 6.2, the two-dimensional equations of a ‘mem-
brane’ shell (described at the beginning of this section) thus have exactly
one solution.

7. Preliminaries to the asymptotic analysis of linearly
elastic shells

The purpose of this section is to gather the fundamental preliminaries needed
in Sections 8 to 10 for carrying out the asymptotic analysis of all kinds of
linearly elastic shells. After ad hoc ‘scalings’ of the unknowns (the cov-
ariant components of the three-dimensional displacement field) and ad hoc
‘asymptotic’ assumptions on the data (the Lamé constants and applied force
densities) have been made, the problem of a linearly elastic clamped shell
with thickness 2¢ > 0 is transformed into a scaled problem, defined over a
domain that is independent of €.
Recall that € is not subjected to the rule governing Greek exponents.

7.1. The three-dimensional equations

As in Section 4, let w be a domain in R? with boundary 7, let y = (y,) denote
a generic point in the set W, and let 9, := 0/0y,s. Let 6 € C?(w;R3) be an
injective mapping such that the two vectors aq(y) := 0,0(y) are linearly
independent at all points y € w. These two vectors form the covariant
basis of the tangent plane to the surface S := 0(w) at the point 6(y) and
the two vectors a®(y) of the tangent plane at O(y) defined by the relations
a®(y) - ag(y) = 65 form its contravariant basis. Also, let

as(y) = a¥(y) = a1(y) A as(y)

T ar(y) A as(y)]

Then |a3(y)| = 1, the vector ag(y) is normal to S at the point 8(y), and the

three vectors a‘(y) form the contravariant basis at 0(y). Recall that (y1,2)

constitutes a system of curvilinear coordinates for describing the surface S.
Let ¢ denote a dy-measurable subset of the boundary v of w satisfying

length v9 > 0.
For each € > 0, we define the sets
OF :=wx] —¢g,¢f and I'G := 79 X [—¢,¢€].

Let 2° = (25) denote a generic point in the set Q and let 95 := 9/9x5;
hence 2%, = y, and 0, = 0q.

Consider an elastic shell with middle surface S = 6(w) and (constant)
thickness 2¢ > 0, that is, an elastic body whose reference configuration
consists of all points within a distance < e from S. In other words, the
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reference configuration of the shell is the image O(Q°) C R? of the set
Q" C R3 through the mapping © : Q° — R? given by

O(a) = O(y) + a5as(y) for all 2° = (y,25) = (y1,y2,75) € V.

It can then be shown (Ciarlet 2000, Theorem 3.1-1) that the mapping
O : O° — R3 is injective for sufficiently small ¢ > 0. In other words,
if ¢ > 0 is sufficiently small, (y1,y2,2§) constitutes a bona fide system of
curvilinear coordinates (Section 3) for describing the reference configuration
('-)(ﬁg) of the shell and the physical problem is meaningful since the set
@(ﬁs) ‘does not interpenetrate itself’. These curvilinear coordinates are
called the ‘natural’ curvilinear coordinates of the shell and the curvilinear
coordinate x5 € [—¢,¢| is called the transverse variable. We shall also use
the notation x5 for the ‘natural’ curvilinear coordinates of the shell, that is,
we shall let 2%, = y,, so that a generic point in the set [ may be written
as x° = (25).

It can likewise be shown (see Ciarlet (2000, Theorem 3.1-1)) that, again
for sufficiently small € > 0, the three vectors g5(z°) := 9;©(z°) form the
covariant basis at each point @ (z°),z° € Q°, of the reference configuration,
while the three vectors g“¢(z°) defined by g%¢(x°) - g5(zf) = (5; form the
contravariant basis at ©(z°).

As in Section 3, we define the covariant and contravariant components gfj

and g7 of the metric tensor of the set @(Q°) and the Christoffel symbols
7 by letting
1J,€

95 =995, 97 =g g’ and I = g"° - 07 g5

(we omit the explicit dependence on z¢).

The volume element in the set @(Q°) is /gf daf, where ¢° := det(gg;)-

We assume that the material constituting the shell is homogeneous and
isotropic and that @(ﬁe) is a natural state, so that the material is character-
ized by its two Lamé constants \* > 0 and u® > 0 (Ciarlet 1988, Section 6.2).
The unknown of the problem is the vector field u® = (u$) : @ — R3, where
the three functions u; : Q° — R are the covariant components (with respect
to the contravariant bases {g"*}) of the displacement field ufg"* : O —R?
experienced by the shell under the influence of applied forces. This means
that ug(2°)g"¢(2°) is the displacement of the point ©(z¢); see Figure 7.1.

Finally, we assume that the shell is subjected to a boundary condition of
place u® = 0 on I'{, that is, that the displacement field ujg’V6 vanishes along
the portion O (I'§) of its lateral face O(y x [—¢,¢€]).

In linearized elasticity, the unknown u® = (u$) then satisfies the following
three-dimensional variational problem P(§2°) for a linearly elastic shell in
curvilinear coordinates, that is, stated in terms of the ‘natural’ curvilinear
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Fig. 7.1. A three-dimensional shell problem. Let Q° = wx]—¢,¢[. The
set (), where O(y, 25) = 0(y) + 25as(y) for all z° = (y,z5) € O,
is the reference configuration of a shell, with thickness 2¢ and middle
surface S = @(w). The unknowns of the problem are the three covariant
components u; : Q° — R of the displacement field u$g™* : O - R3 of
the points of @(€2). This means that, for each 2° € Q, us (2°)g"* (2°)
is the displacement of the point ©(z°) € ©(1")

coordinates x5 of the shell,
uf € V(QF) := {v° = (vf) € H(Q°) : v* = 0 on [§},
/6 Aijkl’aeiw(ua)efnj(’UE>\/QTd.fE _ /QE fi’avagdeE
for all v® € V(QF), where
AiiRLe . e gideghle | e (gike gile 4 giLe gike)

designate the contravariant components of the three-dimensional elasticity
tensor of the shell, and

1
eij(ve) =3 (3]8-0;-5 + afv]a») — F%-ev;

are the linearized strains in curvilinear coordinates associated with an ar-
bitrary displacement field v$g"* of the set @(Q°); f° € L?(Q°) denote the
contravariant components of the applied body force density, applied to the
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interior ®(°) of the shell, and dI'* designates the area element along 0QF.
See Ciarlet (2000, Chapters 1 and 3) for details.

Surface forces over the ‘upper’ and ‘lower’ faces @(w x {¢}) and O(w X
{—¢}) of the shell could as well be considered without much further ado,
other than ‘technical’: their consideration simply results in extra terms on
the right-hand sides of the two-dimensional equations that will eventually
be obtained (see Ciarlet (2000) for details). By contrast, we assume that
there are no surface forces applied to the portion @((y—") x [—¢, €]) of the
lateral face of the shell, as their consideration would substantially modify
the subsequent analyses.

The above three-dimensional equations of a linearly elastic shell have ex-
actly one solution. This existence and uniqueness result relies on the three-
dimensional Korn inequality in curvilinear coordinates (Theorem 3.4), com-
bined with the uniform positive definiteness of the three-dimensional elasti-
city tensor, already mentioned in Section 4.

Our basic objective consists in showing that, if € > 0 is small enough
and the data are of appropriate orders with respect to e, the above three-
dimensional problems are ‘asymptotically equivalent’ to a two-dimensional
problem posed over the middle surface of the shell. This means that the
new unknown should be ¢* = ((7), where ¢} are the covariant components
(i.e., over the covariant bases {a‘}) of the displacement field (fa’: w — R3
of the points of the middle surface S = (). In other words, (5 (y)a’(y) is
the displacement of the point 8(y) € S; see Figure 7.2.

7.2. The three-dimensional equations over a fized domain;
the fundamental scalings and assumptions on the data

We now describe the basic preliminaries of the asymptotic analysis of a lin-
early elastic shell, as set forth by Sanchez-Palencia (1990, 1992) in a slightly
different, but in fact equivalent, framework of a ‘multi-scale’ asymptotic ana-
lysis, then by Miara and Sanchez-Palencia (1996), Ciarlet and Lods (19965,
1996d), and Ciarlet, Lods and Miara (1996).

‘Asymptotic analysis’ means that the objective is to study the behaviour
of the displacement field ufgi’E QT S Riase— 0, an endeavour that will
be achieved by studying the behaviour as ¢ — 0 of the covariant components
u; Q° — R of the displacement field, that is, the behaviour of the unknown
u® = (u5) : @ — R? of the three-dimensional variational problem P(Q°)
described above.

Since these fields are defined on sets Q° that themselves vary with e, our
first task naturally consists in transforming the three-dimensional problems
P(2F) into problems posed over a set that does not depend on e¢. The
underlying principle is thus identical to that followed for plates, albeit with
differences in the way it is put to use (cf. Ciarlet (1997, Section 1.3)).
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Fig. 7.2. A two-dimensional shell problem. The unknowns are the three
covariant components (¢ : @ — R of the displacement field (fa’ : © —
R? of the points of the middle surface S = @(w). This means that, for
each y € @, (f(y)a(y) is the displacement of the point 8(y) € S

Let
Q:=wx]—1,1[and Ty := v x [-1,1].

Let © = (w1, 2, 23) denote a generic point in the set Q and let 9; := 0/0x;;
hence z, = ya, since a generic point in the set @ is denoted by y = (y1,y2).
The coordinate xz3 € [—1, 1] will also be called transverse variable, like 2§ €
[—€,¢]). With each point z = (z;) € 2, we associate the point ¢ = (z£) €
O through the bijection (see Figure 7.3)

7w = (11, 72,23) € Q — 2° = (25) = (1, 22,673) € .

Note in passing that we therefore have 5, =24 =y, 05, =0, and 05= %83.
In order to carry out our asymptotic treatment of the solutions u® = (u5)

of problems P(Q2°) by considering ¢ as a small parameter, we must:

(i) specify the way the unknown u® = (u$) and more generally the vector

fields v = (vf) appearing in the formulation of problems P(£2°) are mapped
into vector fields over the set €Q;

(ii) control the way the Lamé constants and the applied body forces depend
on the parameter .
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Fig. 7.3. Transformation of the three-dimensional shell problem into
a ‘scaled’ problem, posed over the fixed domain Q = wx] —1,1]

With the unknown v = (u$) : @ — R? and the vector fields v® = (vf) :
Q° — R? appearing in the three-dimensional variational problem P(Q°), we
associate the scaled unknown u(e) = (u;(€)) : @ — R? and the scaled vector

fields v = (v;) : Q — R3 defined by the scalings
wi(e)(x) == us (2) and vi(x) = v$(z°) for all 2° = n°zx € .

The three components wu;(¢) of the scaled unknown wu(e) are called the
scaled displacements.

We next make the following assumptions on the data, that is, on the Lamé
constants and on the applied body forces. There exist constants A > 0 and
p > 0 independent of € and there exist functions f* € L?(Q) independent of



MATHEMATICAL MODELLING OF LINEARLY ELASTIC SHELLS 147

€ such that, for all € > 0,

A=X and uf =y,
fie(2f) = e2fi(z) for all 2 =7z € QF,

where the exponent a is for the time being left unspecified (needless to say,
a is not subjected to the usual rule governing Latin exponents!)

Since the problem is linear, we assume without loss of generality that the
scaled unknown wu(e) is ‘of order 0 with respect to &’. This means that the
limit of u(e) as € approaches zero (assuming that such a limit exists, in an
ad hoc function space) is a priori assumed to be of order 0, when the applied
forces are of the right orders.

We have assumed that the Lamé constants are independent of €. How-
ever, this assumption is merely a special case among a more general class
of assumptions, which permit in particular the Lamé constants to vary with
€ as € — 0 if one so wishes. More precisely, a multiplication of both Lamé
constants by a factor ef,¢t € R, is always possible, as we shall see after
Theorem 7.1. The choice t = 0 is merely made here for simplicity.

For sufficiently small ¢ > 0 (so that the mapping © that defines the
reference configuration of the shell is injective), a simple computation then
produces the equations that the scaled unknown w(e) satisfies over the set
Q, thus over a domain that is independent of ¢ (the Christoffel symbols Fi;
and Fg&f vanish in ¢ for the special class of mappings © considered here;

consequently, the functions I'4(e) and I'4;(e) defined below likewise vanish
in Q).
Theorem 7.1: The three-dimensional shell problem over the fixed
domain Q =wx]—1,1[.  With the functions I'}%, g=, AUMe QO - R
appearing in the equations of problem P(QF), we associate the ‘scaled’ func-
tions I‘?j(e), g(e), AU (g) : Q@ — R defined by

I0(e)(x) =07 (a),  gle)(w) == g°(a), AM(e)(x) := AT (%)

for all 5 = 7%z € .
With any vector field v = (v;) € HY(Q), we associate the ‘scaled linearized
strains’ e;;(e;v) = €;);(g;v) € L*(Q) defined by

1
ea|ple;v) = 5(851)& + Oqvg) — Fgﬁ(a)vp,

1/1
ea||3(5;'v) = 2<€83Ua —|—(9av3> —TI'%.(e)v,,
63”3(6;'0) = 2831)3.

Let the assumptions on the data be as above. Then, for sufficiently small
g, the scaled unknown wu(e) satisfies the following scaled three-dimensional
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variational problem P(e; ) of a linearly elastic shell:

u(e) e V(Q) :={v=(v;) eH'(Q) :v=00nTy},
/QAijkl(ff)ekz(€;u(€))€i|j(€;v)\/9(€) dz = Ea/flfivi\/g(E) dz
for all v € V(Q). O

The functions A%k (¢) are called the contravariant components of the
scaled three-dimensional elasticity tensor of the shell. The functions e;;(e; v)
are called ‘scaled’ linearized strains because they satisfy

eij(e;v)(x) = €5 (v°)(a) forall 2° =7z € [

Note that the scaled strains e;3(¢;v) are not defined for ¢ = 0. Hence
problems P(g;Q) provide instances of singular perturbation problems in
variational form, as considered and extensively studied by Lions (1973).

Note also that ezactly the same scaled three-dimensional problem P(e; §2)
is evidently obtained if the scaled unknown is defined as before, but the
following more general assumptions on the data are made:

XN=¢et\  and pf =elp,
fie(2f) = e fi(x) for all 2° = 7z € QF,

where the constants A > 0 and g > 0 and the functions f* € L?(Q) are as
before independent of €, but ¢ is an arbitrary real number.

Our main objective now consists in establishing the convergence of the
scaled unknown u(e) in ad hoc function spaces as £ approaches zero. We
shall see in this respect that there are essentially two distinct possible types
of limit behaviour of u(e), corresponding either to linearly elastic ‘mem-
brane’ shells (Sections 8 and 9) or to linearly elastic ‘flexural’ shells (Sec-
tion 10).

8. ‘Elliptic membrane’ shells

As we shall see, the classification of linearly elastic shells critically hinges
on whether there exist nonzero displacement fields 7;a’ : @ — R of the
middle surface S = 6(w) that are both linearized inextensional ones, i.e.,
that satisfy v,5(n) = 0 in w, and admissible, i.e., that satisfy the boundary
conditions 7; = d,n3 = 0 on ~p.

More specifically, define the space

Vi(w) = {n=(n) € H'(w) x H'(w) x H2(w) : n; = d,m3 = 0 on 7o,
Yag(m) = 0 in w}.
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Then a shell is called either a linearly elastic ‘membrane’ shell if Vp(w) =
{0}, that is, if Vp(w) contains only n = 0, or a linearly elastic ‘flexural’
shell if Vp(w) # {0}, that is, if Vp(w) contains nonzero elements.

A first instance where Vp(w) = {0} is provided by a linearly elastic ‘el-
liptic membrane’ shell, that is, one whose middle surface S = (@) is elliptic
(equivalently, the Gaussian curvature of S is everywhere > 0) and which is
subjected to a boundary condition of place along its entire lateral face: that
Vp(w) = {0} simply follows from the linearized rigid displacement lemma
on an elliptic surface (Theorem 6.2).

The other instances where Vp(w) = {0} constitute the linearly elastic
‘generalized membrane’ shells, which will be studied in the next section.

The purpose of this section is to identify and to mathematically justify
the two-dimensional equations of a linearly elastic elliptic membrane shell,
by showing how the convergence of the three-dimensional displacements can
be established in ad hoc function spaces as the thickness of such a shell
approaches zero.

8.1. Definition and example

Let w be a domain in R? with boundary v and let 8 € C?(w;R3) be an
injective mapping such that the two vectors 0,6(y) are linearly independent
at all points y € w. A shell with middle surface S = 0(w) is called a
linearly elastic elliptic membrane shell if the following two conditions are
simultaneously satisfied.

(i) The shell is subjected to a (homogeneous) boundary condition of place
along its entire lateral face @(vy x [—¢,¢]), that is, the displacement field
vanishes there; equivalently,

Y0 =7-

(ii) The middle surface S is elliptic, in the sense that there exists a constant
¢ such that

D 167 < clbap(y)6*€P for all y € @ and all (£%) € R?,

where the functions b,3 : @ — R are the covariant components of the
curvature tensor of S (this definition was given in Section 6). This assump-
tion means that the Gaussian curvature of S is everywhere > 0; equivalently,
the two principal radii of curvature are either both > 0 at all points of 5,
or both < 0 at all points of S (see, e.g., Ciarlet (2000, Section 2.2) for a
detailed exposition of these notions).

A shell whose middle surface S = 0(w) is a portion of an ellipsoid, and
which is subjected to a boundary condition of place, that is, of vanishing
displacement field along its entire lateral face ®(y x [—¢,¢€]) (solid black in
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Fig. 8.1. A linearly elastic ‘elliptic membrane’ shell

the figure), provides an instance of a linearly elastic elliptic membrane shell;
see Figure 8.1.

The definition of a linearly elastic elliptic membrane shell thus depends
only on the subset of the lateral face where the shell is subjected to a bound-
ary condition of place (via the set ) and on the geometry of its middle
surface.

If assumptions (i) and (ii) are satisfied and @ € C%!(w; R3), the linearized
rigid displacement lemma on an elliptic surface (Theorem 6.2) shows that

{n=(m) € Hy(w) x Hy(w) x L*(w) : 7ap(n) = 0 in w} = {0}.

Hence linearly elastic elliptic membrane shells indeed provide a first instance
where the space

Ve(w) :={n=(n) € H(w) x H'(v) x H*(w) :
ni = Oym3 = 0 on 70,73(n) =0 in w}

a fortiori reduces to {0}. We recall that 9, denotes the outer normal deriv-
ative operator along ~; the subscript ‘F’ reminds us that this space will be
central to the study of linearly elastic ‘flexural’ shells in Section 10.

8.2. Convergence of the scaled displacements as the thickness
approaches zero

We now establish the main results of this section. Consider a family of
linearly elastic elliptic membrane shells with thickness 2¢ > 0 and with each
having the same middle surface S = 6(w), the assumption on the data being
as in Theorem 8.1 below.

Then the solutions u(e) of the associated scaled three-dimensional prob-
lems P(g;Q) (Theorem 7.1) converge in H'(Q) x H'(Q) x L*(Q) as e — 0
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toward a limit w and this limit, which is independent of the transverse vari-
able 3, can be identified with the solution @ of a two-dimensional variational
problem Pjs(w) posed over the set w.

The functions v,3(n) appearing in the next theorem represent the covari-
ant components of the linearized change of metric tensor associated with a
displacement field n;a’ of the middle surface S.

Note that the assumption on the applied body forces made in the next
theorem corresponds to letting @ = 0 in Theorem 7.1. That a = 0 is indeed
the ‘correct’ exponent in this case can be justified in two different ways:

It is easily checked that this choice is the only one that let the applied
body forces enter (via the functions p’) the right-hand sides of the variational
equations in the ‘limit’ variational problem Pjs(w) satisfied by w.

Otherwise, the number a can be considered a priori as an unknown. Then
a formal asymptotic analysis of the scaled unknown wu(e) shows that, for a
family of linearly elastic membrane shells (thus of the type considered here),
the exponent a must be set equal to 0, again in order that the applied body
forces contribute to the ‘limit’ variational problem; c¢f. Miara and Sanchez-
Palencia (1996).

The following result is due to Ciarlet and Lods (19965, Theorem 5.1); a
complete proof is also given in Ciarlet (2000, Theorem 4.4-1).

Theorem 8.1: Convergence of the scaled displacements. Assume
that @ € C3(w;R?). Consider a family of linearly elastic elliptic membrane
shells with thickness 2¢ approaching zero and with each having the same
elliptic middle surface S = 6(w), and assume that there exist constants
A >0 and g > 0 and functions f* € L?(2) independent of € such that

A=\ and ,U'E = W,
fo(2f) = fi(x) forall zf =7z € Q.

(the notation is that of Section 7). Let u(e) denote for sufficiently small £ >
0 the solution of the associated scaled three-dimensional problems P(e; ()
(Theorem 7.1). Then there exist functions u, € H'(2) satisfying u, = 0 on
v x [-1,1] and a function ug € L?(Q) such that

Ua(e) — uq in HY(Q) and uz(e) — us in L?(Q) as € — 0,

u := (u;) is independent of the transverse variable z3.

Furthermore, the average uw := % f_lludxg satisfies the following two-
dimensional variational problem Pjs(w):

= (u;) € Vy(w) := Hg(w) x Hy(w) x L*(w),
/ a®P7 Ty (W) Yap (M )xfdy—/p"nm/&dy
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for all n = (n;) € Vs(w). Here

1 g
Yap(M) = 5(9pma + Oanp) = Togns = bapns,

4\
q®BoT . )\+';Iuaa,3acr7'+2M(aa0aﬁ7+aa’raﬁo)’

1
P ::/ /' das.
-1

Sketch of proof. (i) The proof rests on a crucial three-dimensional inequal-
ity of Korn’s type for a family of linearly elastic elliptic membrane shells with
each having the same elliptic middle surface S = 6(@). For such a family,
there exists a constant C' such that, for sufficiently small € > 0,

1/2 1/2
{ Z ||Ua||iﬂ + U3|(2J,Q} < C{ Z leq; (&3 v)%,ﬂ}

)

for all v = (v;) € V(Q2), where
V(Q) ={v=(v) cH(Q):v=00n v x [-1,1]},

and the functions e,-Hj(e;v) are the scaled linearized strains appearing in
Theorem 7.1. Note that the proof of this inequality relies in a critical way
on the inequality of Korn’s type on an elliptic surface (Theorem 6.3).

(ii) The special form of the mapping © that defines the reference configur-
ations of the shells (Section 7) implies that there exists a constant C, such
that, for sufficiently small £ > 0,

D lti* < CeAM (e) () tuatsy

i3

for all € Q and all symmetric matrices (¢;;).

Letting v = u(e) in the variational equations of problem P(g;2) (The-
orem 7.1) and combining the three-dimensional inequality of Korn’s type
of (i) with the above inequality then yields a chain of inequalities imply-
ing that the norms [[ua(€)[[1,0, [us(€)|on, and |e;;(e;u(e))lon are bounded
independently of ¢.

Thus there exists a subsequence, still denoted by (u(€))c>o for notational
convenience, such that

Ua(€) — uq in H(S), U () — uq in L3(Q),
ug(e) — uz in L*(Q), ¢;;(g;ule)) — ¢;; in L*(Q)

(strong and weak convergence being respectively denoted by — and —).
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(iif) The above convergence, combined with the asymptotic behaviour of
the functions PZ(@),A”M (¢), and g(¢), then implies that the functions u;

and e;|; are independent of x3 and that they are related by

1
Callg = 5(80/”5 + 8ﬁua) - Fgﬁuo — bapus,
A
a
A+ 2p

€a3 = 0, €33 = - “Pea)s
(iv) In the variational equations of problem P(g; ), keep a function v €
V(Q) fixed and let ¢ approach zero. Then the asymptotic behaviour of the
functions A¥*(g) and g(¢), combined with the relations found in (iii), shows
that the average u = % f_ll udrs € V(w) indeed satisfies the variational
equations of the two-dimensional problem Pjys(w) stated in the theorem.
The solution to Pjs(w) being unique, the convergence established in (ii)
for a subsequence thus holds for the whole family (u(e))e>o.

(v) Again letting v = u(e) in the variational equations of P(g;2) and using
the results obtained in (ii)—(iv), we obtain the following strong convergence:

ei|i(eiu(e)) — e, in L*(Q),

e e
2/ u(e)dzs — 2/ wdzs in H'(w) x HY(w) x L*(w),
—1 -1

uz(e) — ug in L*(w).
(vi) The strong convergence
Ua(e) — uq in HY(Q),

is then obtained as a consequence of the classical three-dimensional Korn in-
equality in Cartesian coordinates, combined with another use of the Lemma
of J. L. Lions (Theorem 3.1). O

8.3. The two-dimensional equations of a linearly elastic
‘elliptic membrane’ shell

The next theorem recapitulates the definition and assembles the main prop-
erties of the ‘limit’ two-dimensional variational problem Pp;(w) found at
the outcome of the asymptotic analysis carried out in Theorem 8.1. Note
that Pys(w) is an atypical variational problem, in that one of the unknowns,
namely, the third component (3 of the vector field ¢ = ((;), ‘only’ lies in the
space L?(w).

The existence and uniqueness theory, which is quickly reviewed in this
theorem, is expounded in detail in Section 6, where ad hoc references are
also provided.
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Theorem 8.2: Existence, uniqueness, and regularity of solutions;
formulation as a boundary value problem. Let w be a domain in R?
and let @ € C*>'(w;R3) be an injective mapping such that the two vectors
a, = 0,0 are linearly independent at all points of @ and such that the
surface S = 6(w) is elliptic.

(a) The associated two-dimensional variational problem Py (w) found in
Theorem 8.1 is as follows. Given functions p’ € L?(w), find ¢ = ({;) satisfy-
ing

¢ € Vy(w) = H}(w) x H} (w) x L?(w),

/W“%«mmmﬁwz/ﬁmmw

for all n = (n;) € Vy(w), where

1 (o
Yap(m) = 5(9pma + Oanp) = Togn0 = bapns,
4\
aaﬂm‘ — )\+guaaﬂa07 —{—Q;L(QQJCLﬁT—}—aaT(ZﬁU).

This problem has exactly one solution, which is also the unique solution of
the minimization problem:
Find ¢ such that

¢ € Vu(w) and ju(¢) = inf ja(n), where
nEVr(w)

y 1 apoT )
)= [ @ s maatmVady ~ [ pnivady.

(b) If the solution ¢ = ((;) of Pps(w) is sufficiently smooth, it also satisfies
the boundary value problem

—naﬁ\g = p% in w,
—baﬂnaﬁ = p® in w,
Ca = 0 0n 7,
where
n®? .= a“ﬁ‘”’ym(() and naﬁlg = 9,n? + F?Tnm + I‘ngm.

(c) Assume that there exist an integer m > 0 and a real number ¢ > 1
such that 7 is of class C™*3, 8 € C"3(w;R3), p® € W™4(w), and p? €
Wm+Ld(y). Then

¢ = (&) € WMT2a(w) x WMH29(w) x WmHha(y).

Proof. The existence and uniqueness of a solution to the variational prob-
lem Py (w), or to its equivalent minimization problem, is a consequence of
the inequality of Korn’s type on an elliptic surface (Theorem 6.3), of the
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existence of constants ¢, and aq such that

Z ’taﬂ‘2 S Ceaa'@UT(y)tchtaﬁ
a7/3

for all y € @ and all symmetric matrices (t,g) (Ciarlet 2000, Theorem 3.3-2)
and a(y) > ap > 0 for all y € W, and of the Lax—Milgram lemma.

In view of finding the associated boundary value problem stated in part (b),
we first note that

Oav/a = al'g,,

as is easily verified.
Using Green’s formula in Sobolev space and assuming that the functions
n®? = nP* are in H'(w), we next obtain

[ @ e ©rastmvady = [ 10 vady

— / Van® ( (0570 + Dang) — Fggna—baﬂns) dy

= /ﬁnaﬂﬁgna dy—/\/anaﬁrgﬁﬂa dy — /\/a” Fbasns dy
= —/w(?g(\/&n“ﬁ)nady—/‘U\/&naﬁf"g%dy /\/5” bagns dy
= - / Va(9gn®? +T2n™ + T n®)n, dy — / Van®bagnz dy

— [ Va{ (710 + o} dy

for all n = (1;) € Vr(w). Hence the variational equations imply that
/ Va{ (0|5 + p*) o + (bagn® +p*)n3 } dy = 0
w

for all (1;) € Var(w), and thus n®|g = p® and ban®® = p? in w.
The regularity result of part (c) is due to Genevey (1996). O

Note that the functions n®?|, are instances of first-order covariant deriv-
atives of a tensor field, defined here by means of its contravariant compon-
ents n®’,

In order to get physically meaningful formulas, it remains to ‘de-scale’
the unknowns ¢; that satisfy the limit ‘scaled’ problem Pj;(w) found in
Theorem 8.2. In view of the scalings u;(e)(z) = ué(2°) for all 2° = 7%z € Q°
made on the covariant components of the displacement field (Section 7), we
are led to defining for each € > 0 the covariant components ¢; : W — R of
the ‘limit displacement field’ (fa’ : @ — R3 of the middle surface S of the
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shell by letting
G =G

(the vectors a’ forming the contravariant basis at each point of S).

Naturally, the field (¢f) and the field (fa’ must be carefully distinguished!
The former is essentially a convenient mathematical ‘intermediary’, while
only the latter has physical significance.

Recall that f%¢ € L?(QF) represent the contravariant components of the
applied body forces actually acting on the shell and that A* and p° denote
the actual Lamé constants of its constituent material. We then have the
following immediate corollary to Theorems 8.1 and 8.2. Naturally, the ex-
istence, uniqueness and regularity results of Theorem 8.2 apply verbatim to
the solution of the ‘de-scaled’ problem Pj;(w) found in the next theorem
(for this reason, they are not reproduced here).

Theorem 8.3: The two-dimensional equations of a linearly elastic
‘elliptic membrane’ shell. Let the assumptions on the data be as in
Theorem 8.1. Then the vector field ¢ := (¢) formed by the covariant
components of the limit displacement field Cfai of the middle surface S sat-
isfies the following two-dimensional variational problem Pj,(w) of a linearly
elastic elliptic membrane shell:

¢ € Vy(w) = H(w) x H} (w) x L*(w),
£ / a7 (C)vap(m)Vady = / P nivady

for all § = (n;) € Vyr(w), where

1
Yap(M) = 5(Opma + Dans) = Togns — bapis,
aaﬁm—,e — )\:1/}:/;5 ! aaﬁam— + Zua(awam + aa'raﬁa)7
1

€
P = / fie das.
—&

Equivalently, the field ¢* satisfies the minimization problem

¢f € Vy(w) and j5,(¢°) = \i/nf( )ﬁw(n), where

aﬁo’rs '7046( )\fdy /pi’gm\/&dy.

E

s\

If the field ¢ = (¢7) is sufficiently smooth, it also satisfies the following
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boundary value problem:
_naﬁ,s‘ﬁ = p™€ in w,
—ba/gnc“ﬂ’E = p> in w,

¢ = 0onn,

(07

where
naﬁ,a — EaaﬂUT’E’YgT(CE),
n|, = 9,n P 4 T2 nThe 4 TP pome, O

Each one of the three formulations found in Theorem 8.3 constitutes one
version of the two-dimensional equations of a linearly elastic elliptic mem-
brane shell. The functions v,3(n) are the covariant components of the lin-
earized change of metric tensor associated with a displacement field n;a’ of
the middle surface S, the functions a®?°™¢ are the contravariant components
of the two-dimensional elasticity tensor of the shell, and the functions n®%¢
are the contravariant components of the stress resultant tensor field.

The functional j5,; : Vy(w) — R is the two-dimensional energy, and the
functional

€ apoT
neVa) = 5 [ @ s Vady

w

is the two-dimensional strain energy of a linearly elastic elliptic membrane
shell.

Finally, the equations —n®%< g = p*° and —boégnaﬁ’E = p>° in w consti-
tute the two-dimensional equations of equilibrium, and the relations n®%¢ =
6@0‘5‘”’5707@8) constitute the two-dimensional constitutive equation of a
linearly elastic elliptic membrane shell.

Under the essential assumptions that 79 = v and that the surface S is
elliptic, we have therefore justified by a convergence result (Theorem 8.1)
two-dimensional equations that are called those of a linearly elastic ‘mem-
brane’ shell in the literature (which, however, usually ignores the distinction
between ‘elliptic’ and ‘generalized’ membrane shells); see, e.g., Koiter (1966,
equations (9.14) and (9.15)), Green and Zerna (1968, Section 11.1), Dikmen
(1982, equations (7.10)), or Niordson (1985, equation (10.3)).

In so doing, we have also justified the formal asymptotic approach of
Sanchez-Palencia (1990) (see also Miara and Sanchez-Palencia (1996), Caill-
erie and Sanchez-Palencia (1995b6), Faou (2000a, 2000b)) when ‘bending is
well-inhibited’, according to the terminology of E. Sanchez-Palencia.

Note that the above convergence analysis also substantiates an important
observation. In an elliptic membrane shell, body forces of order O(1) with
respect to ¢ produce a limit displacement field that is also O(1). By con-

3.e
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trast, body forces must be of order O(g?) in order to produce an O(1) limit
displacement field in a flexural shell. See Section 10.

After the original work of Ciarlet and Lods (1996b) described in this sec-
tion, the asymptotic analysis of linearly elastic membrane shells underwent
several refinements and generalizations.

First, Genevey (1999) has shown that the convergence result of The-
orem 8.1 can also be obtained by resorting to I'-convergence theory.

Using the techniques of Lions (1973), Mardare (1998a) was able to com-
pute a corrector, so as to obtain in this fashion the following remarkable
error estimate. In addition to the hypotheses made in Theorem 8.1, assume
that the boundary of the domain w is of class C?, that d,f¢ € L?(Q), and
that

1
¢ = 1 / udzs € H?(w) NV (w).
—1

Then there exists a constant C' = C(w, 0, f*,¢) independent of e such that

[u(e) — wll g (oyx i (@) xr2i) < CeY/S,

and moreover, the exponent 1/6 is the best possible.

Other useful extensions include the justification by an asymptotic analysis
of linearly elastic membrane shells with variable thickness (Busse 1998),
the convergence of the stresses and the explicit forms of the limit stresses
(Collard and Miara 1999), an asymptotic analysis of the associated time-
dependent problem (Xiao Li-Ming 1998), and the extension of the present
analysis to shells whose middle surface is elliptic but has ‘no boundary’, such
as an entire ellipsoid (Ramos (1995) and Slicaru (1997)).

The variational formulation of the limit two-dimensional problem of a
linearly elastic elliptic membrane shell (Theorem 8.3) possesses the unusual
feature that its third unknown ¢§ ‘only’ belongs to the space L?(w). This
explains why the averaged three-dimensional boundary condition

—€ .__ 1 ) € O
Uy = o /_Eugdxg =0on~y
is ‘lost’ as ¢ — 0, since ¢§ = 0 on 7 does not make sense. As expected,
this loss is compensated by the appearance of a boundary layer in the un-
known (3.

Again because the third unknown (5 is only in L?(w), the linear oper-
ator associated with the variational problem of a linearly elastic elliptic
membrane shell is not compact and thus the analysis of the corresponding

eigenvalue problem requires special care; see Sanchez-Hubert and Sanchez-
Palencia (1997, Chapter 10).
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9. ‘Generalized membrane’ shells

A shell with middle surface S = 0(@), subjected to a boundary condition
of place along a portion of its lateral face with 0(yy), where vy C 7, as its
middle curve, is a linearly elastic ‘generalized membrane’ shell if it is not an
elliptic membrane shell according to the definition given in Section 8, yet if
its associated space

V() = {n = (5) € H(w) x H(w) x H(w)
n; = 8ym3 =0 on Y0,%a(N) =0 in w}

still reduces to {0}. As shown in Section 9.1, examples of generalized mem-
brane shells abound.

The purpose of this section is to identify and to mathematically justify the
two-dimensional equations of a linearly elastic generalized membrane shell,
by establishing the convergence of the three-dimensional displacements in
ad hoc function spaces as the thickness of such a shell approaches zero.

9.1. Definition and examples

Let w be a domain in R? with boundary v and let 8 € C?(w;R?) be an
injective mapping such that the two vectors 0,6(y) are linearly independent
at all points y € w. A shell with middle surface S = 0(w) is called a
linearly elastic generalized membrane shell if the following three conditions
are simultaneously satisfied.

(i) The shell is subjected to a (homogeneous) boundary condition of place
(i.e., of vanishing displacement field) along a portion of its lateral face with
0(~o) as its middle curve, where the subset vy C v satisfies

length v¢ > 0.
(ii) Define the space
Vi(w):={n=(n) e H(w) x H(w) x H*(w) :
i = Oymz =0 on Y0,%s(n) =0 in w}
(0, denoting the outer normal derivative operator along ). Then the space
Vp(w) contains only n = 0.

(iii) The shell is not an elliptic membrane shell. We recall that a linearly
elastic shell is an ‘elliptic membrane’ shell if 79 = v and S is elliptic (Sec-
tion 8.1) and that an elliptic membrane shell also provides an instance where
the space Vp(w), which in this case is the space H}(w) x H}(w) x HZ(w),
reduces to {0} (at least if & € C?>'(w;R3); c¢f. Theorem 6.2). General-
ized membrane shells thus exhaust all the remaining cases of linearly elastic
membrane shells, i.e., those for which Vp(w) = {0}.
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Fig. 9.1. Two examples of linearly elastic ‘generalized membrane’ shells

The definition of a linearly elastic ‘generalized membrane’ shell thus de-
pends only on the subset of the lateral face where the shell is subjected to
a boundary condition of place (via the set 7p) and on the geometry of the
middle surface of the shell.

As shown by Vekua (1962) under the assumptions that @ € W3»(w; R?) for
some p > 2 and that  is of class C3, then by Lods and Mardare (1998a) under
the assumption that @ € C*!(w;R3) and that v is Lipschitz-continuous,
a shell whose middle surface S = 0(w) is a portion of an ellipsoid and
which is subjected to a boundary condition of place along a portion (solid
black in the figure) of its lateral face whose middle curve 8(yy) is such
that 0 < length v < length v, provides an instance of a linearly elastic
generalized membrane shell; see Figure 9.1. A comparison with Figure 8.1
illustrates the crucial role played by the set 6(vy) in determining the type
of shell!

As shown by Mardare (1998¢) under the assumption that 6 € C*!(w;R3)
(see also Vekua (1962) and Sanchez-Hubert and Sanchez-Palencia (1997,
Chapter 7, Section 2)), a shell whose middle surface S = 8(w) is a portion of
a hyperboloid of revolution and which is subjected to a boundary condition
of place along its entire ‘lower’ lateral face provides another instance of a
linearly elastic generalized membrane shell; see Figure 9.1.

A shell whose middle surface S = (@) is a portion of a cone or a cylinder
and which is subjected to a boundary condition of place along a portion
(solid black in the figure) of its lateral face with @(yg) as its middle curve
is a linearly elastic generalized membrane shell if 6(~g) intersects all the
generatrices of S; see Figure 9.2.

As for elliptic membrane shells (Section 8), the formal asymptotic analysis
of Miara and Sanchez-Palencia (1996) again suggests making the following
assumptions on the data for a family of generalized membrane shells. We
require that the Lamé constants and the applied body densities appearing
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Fig. 9.2. Other examples of linearly elastic ‘generalized membrane’ shells

in the three-dimensional problems P (%) (Section 7) satisfy

M=\ and =g,
fo(2f) = fi(x) forall zf =7z € QF,

where the constants A > 0 and p > 0 and the functions f* € L?(Q) are
independent of €. In other words, the exponent a in Theorem 7.1 again
vanishes.

It turns out, however, that in order to carry out the asymptotic analysis
of generalized membrane shells, we have to make a specific, and rather strin-
gent, assumption on the applied forces, which supersedes in fact the above
one, in such a way that the linear form appearing in the variational prob-
lem P(g;Q) of Theorem 7.1 becomes continuous with respect to an ad hoc
norm, and uniformly so with respect to €. We now describe this assumption,
particular to generalized membrane shells.

9.2. ‘Admissible’ applied forces

Consider a family of linearly elastic generalized membrane shells, with thick-
ness 2¢, with each having the same middle surface S = 6(w), and with each
subjected to a boundary condition of place along a portion of its lateral face
having the same set 6(vp) as its middle curve, and let the assumptions on
the data be as in Section 9.1.
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Let
V(Q) :={v=(v) € H(Q): v =0 on Ty},
and, for each € > 0, let the linear form L(e) : V(2) — R be defined by

L(e)(v) := /inv“/g(e) dz for all v e V(Q).

In other words, L(e)(v) is the right-hand side in problem P(e; ) (The-
orem 7.1), which takes into account the applied body forces through the
functions f¢ € L?(Q). Then each linear form L(e) : V() — R is clearly
continuous with respect to the norm || - [|;,o and uniformly so with respect
to sufficiently small € > 0.

It so happens, however, that an essentially stronger property is needed.
The linear forms L(e) should also be continuous, and uniformly so, with
respect to sufficiently small & > 0, and with respect to the norm (itself
dependent on ¢)

1/2
v = {Z ’€i|j(5;v)\g,9} .
1,J

In order to fulfil this requirement in a concrete manner, we set the fol-
lowing definition. Applied forces acting on a family of linearly elastic gen-
eralized membrane shells are said to be ‘admissible’ if there exist functions
FY(g) = FIi(g) € L?(2) and functions F¥ = FJ* € L?(Q) such that

L(e)(v) = /Q Fi(e)ex; (65 0)V/g(e) da

for all 0 < e < ¢gg and for all v € V(§2), and
Fii(e) — F% in L*(Q) as € — 0.

If the applied forces are admissible, there thus exists a constant kg such
that

1/2

|L(g)(v)] < HO{ > eq; (e v)|3,9}
i,

for all 0 < & < g and for all v € V(2), as was required.

This inequality will be put to an essential use in Theorem 9.1 for finding
the a priori bounds that the family of scaled unknowns satisfies.

The convergence F'/(¢) — F% in L?(Q) serves a further purpose, that
of defining the right-hand sides appearing in the ‘limit’ two-dimensional
problems (see again Theorem 9.1).

Naturally, admissible forces have to be identified for each instance of gen-
eralized membrane shells; see in this respect the references given in Sec-
tion 9.4.
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9.3. Convergence of the scaled displacements as the thickness
approaches zero

A generalized membrane shell is ‘of the first kind’ if the space

Vo(w) ={n=(n) € H'(w) : n =0 on 70, 7as(n) =0 in w},

which is larger than the space Vp(w), ‘already’ reduces to {0}. Equivalently,
the seminorm | - |M defined by
1/2
2 }
0,w

|l = {Z Yap(n)
a,B
V(w) ={n=(n;) e H'(w) : 7 = 0 on v}.

is ‘already’ a norm over the space

As all the known examples of generalized membrane shells satisfy this
assumption, we shall not consider here the generalized membrane shells ‘of
the second kind’, i.e., those for which Vp(w) contains only n = 0, but
Vo(w) contains nonzero elements. Such shells are analysed in Ciarlet and
Lods (1996d, Theorem 5.1); see also Ciarlet (2000, Theorem 5.6-2).

We now establish the main results of this section. Consider a family of
linearly elastic generalized membrane shells of the first kind, with thickness
2¢ > 0, with each having the same middle surface S = 6(w), and with each
subjected to a boundary condition of place along a portion of its lateral
face having the same set () as its middle curve, the applied forces being
admissible. Then the averages

o 1
u(e) = ;/_1 u(e) dzs

of the scaled unknowns converge in an ‘abstract’ completion Vg\/[ (w)ase — 0
and their limit satisfies an ‘abstract’ variational problem posed over the same
space Vg\/l (w).

The functions v,4(n) appearing in the next theorem represent the cov-
ariant components of the linearized change of metric tensor associated with
a displacement field mai of the surface S. Hence the bilinear form B,
defined below coincides with that found in the scaled variational problem of
a linearly elastic elliptic membrane shell (Theorem 8.2).

The following result is due to Ciarlet and Lods (1996d, Theorem 5.1);
a complete proof is also given in Ciarlet (2000, Theorem 5.6-1). In these
references, it is also shown how the convergence of the scaled unknowns u(¢)
themselves can be also established, in an ad hoc completion.

Theorem 9.1: Convergence of the scaled displacement. Assume
that @ € C3(w;R3). Consider a family of linearly elastic generalized mem-
brane shells of the first kind, with thickness 2e approaching zero, with each
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having the same middle surface S = 6(@), and with each subjected to a
boundary condition of place along a portion of its lateral face having the
same set O(7p) as its middle curve. Assume that there exist constants A > 0
and p > 0 such that

A =X and pu° = p.
Finally, assume that the applied forces are admissible (Section 9.2). For
sufficiently small € > 0, let u(e) denote the solution of the associated scaled

three-dimensional problems P(e;{2) (Theorem 7.1).
Define the space

V%\/I (w) := completion of V(w) with respect to | - |M.

Then there exists ¢ € ng (w) such that

1
u(e) = 1/ u(e)dzs - ¢ in ng(w) as € — 0.
-1

Let

4\
a®PoT — i +guaaﬁa” + 2/~L(aaoa6T + aa7a60)7

1
'Yaﬁ("’/) = §(aﬁ77a + 804776) - Ffmna — bagns3,
Bu(¢m) == [ a0 (Ovap(m)Vady for {,n € V(w)
WS/ Yor Yo\ M Yy , N )
Ly(m) = /waﬁws(n)\/&dy for n € V(w),

1
A
af = Faﬁ o a,@F33 d c L2
2 /_1{ )\+2MCL } Z3 (w),
where the functions F'/ € L?(f2) are those used in the definition of admissible
forces, and let Bg\/f and Lg\/l denote the unique continuous extensions from
V(w) to Vg\/l(w) of the bilinear form Bj; and linear form Ljs. Then the
limit ¢ satisfies the following two-dimensional variational problem Pjﬁ\/[ (w):

¢ € Vi, (w) and BY,(¢,n) = L%, (n) for all p € VA, (w).

Sketch of proof. (i) The proof rests on a crucial three-dimensional inequal-
ity of Korn’s type for a family of linearly elastic shells, with each having the
same middle surface S = (w), and with each subjected to a boundary con-
dition of place along a portion of its lateral face having the same set 0(vp)
as its middle curve. For such a family, there exists a constant C such that,
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for sufficiently small € > 0,

1/2
Cc
[v]l1,0 < g{ Z feilj(ﬁsv)fg,ﬂ}

1,J
for all v € V(Q), where
V(Q) ={veH(Q):v=00nn x[-1,1]},

and the functions e;;(e;v) are the scaled linearized strains appearing in
Theorem 7.1. The proof of this inequality relies in a critical way on the
linearized rigid displacement lemma on a general surface (Theorem 4.3).

(ii) Given a function v € L%*(Q), let

1
v = 1/ vdrz € L*(w)
2,
denote its average with respect to the transverse variable z3; the same nota-
tion is used for vector-valued functions. Letting v = u(e) in the variational
equations of problem P(e; Q) (Theorem 7.1) and using the three-dimensional
inequality of Korn’s type of (i) then yields a chain of inequalities showing
that the norms |3u(e)|o.q, |u(e)|¥, lejj (5 u(e)]oq, and [leu(e)(1,a are
bounded independently of €. Note that the assumption that the applied
forces are ‘admissible’ is crucial here.

Thus there exists a subsequence, still denoted by (u(g))c>o for notational
convenience, such that u(e) — w in the completion of the space V() with
respect to the norm | - [M defined by |v|} = {|83'v|(2),Q + ([9|M)231/2 and
such that

ei|j(e;u(e)) — e in L2(9), 5@ — u lin HY(Q),
Ozu3(e) = eess(e;u(e)) — 0in L2(Q), u(e) — ¢ in Vg\/[(w).

(iif) The above convergence, combined with the asymptotic behaviour of
the functions I‘fj(s), AR (£), and g(e), then implies that

1

€aH3 = ﬂaagFﬁ‘g,
A F33
— 8
s = g el T X

Yap(u(e)) — afp in L*(w),
cu(e) — 0in HY(Q),
D3uq(e) — 0in L2 (w),

€q|g is independent of the transverse variable x3,
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where the functions F%¥ € L?(Q)) are those appearing in the definition of
‘admissible’ forces.

(iv) In the variational equations of problem P(g;Q), let v € V() be inde-
pendent of the transverse variable z3. Keep such a function v fized and let
¢ approach zero. Then the asymptotic behaviour of the functions A7 (¢)
and g(¢) combined with the relations found in (ii) and (iii) together show
that the limits e, 3 found in part (ii) satisfy

/ a7 e ap (M) Va dy = / #"Yap(m)Vady for all m € V(w),

where

1 A
af = Faﬁ A aﬁF33 d L2 )
4 /1{ A+ 2 } 73 € L'(w)

(v) Again letting v = u(e) in the variational equations of P(g;2) and using
the results obtained in (ii)—(iv), we obtain the following strong convergence:

e (eu(e)) — e in L*(R),
cu(e) — 0 in HY(Q),
704/3( ( )) oz||5 in L? (UJ)
ufe) — ¢ in Vi, (w).
(vi) The convergence yos(u(e)) — €45 in L?(w) implies that the limit
¢e Vt}\/l (w) found in (v) satisfies the equations
Bf,(¢.m) = Lk, (n) for all n € VA, (w),
which have a unique solution. Consequently, the convergence
u(e) — ¢ in V4, (w)
established in (v) holds for the whole family (w(g))eso0. O
9.4. The two-dimensional equations of a linearly elastic
‘generalized membrane’ shell

Again, we only consider generalized membrane shells of the first kind. The
next theorem recapitulates the definition and assembles the main properties
of the ‘limit’ two-dimensional problem found at the outcome of the asymp-
totic analysis carried out in Theorem 9.1.

Theorem 9.2: Existence and uniqueness of solutions. Let w be a
domain in R?, let vy be a subset of the boundary of w with length 4o > 0,
and let @ € C3(w;R?) be an injective mapping such that the two vectors
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a1 = 010, ay = 0,0 are linearly independent at all points of @w. Assume that
Vo(w) = {0}, where

Vo(w) == {n=(n;) € H(w) : 7 = 0 on 79, 7as(n) =0 in w},
1 g
Yap(n) = 5(%% + 0anp) — Lapne — basns,

and define the spaces

V(w) = {n=(m) € H'(w) : 7 =0 on 7},

Vg\/l(w) := completion of V(w) with respect to |- |, where
1/2
m|3 = {Z\%ﬁ(n)law} :
a?/g
Let
4\
aaﬂaT .— 1% aaﬂam- + 2M(aaaaﬂr + acwaﬂa)7

A+ 2u

Mmez/ww%«mmmﬁ@mMmeww

L(n) = /soaﬁvaﬁ(n)\/&dy for n € V(w),

where the functions ¢*? € L?(w) are given, and let B]ﬁw and ng denote the

unique continuous extensions from V(w) to Vg\/l(w) of the bilinear form By
and linear form L.

Then there is exactly one solution to the associated two-dimensional vari-

ational problem Pjﬁw (w) of Theorem 9.1:
Find ¢ such that

¢ € Vi, (w) and B, (¢,m) = L%, (n)
for all p € V%W(w).

Proof. The assumption Vo(w) = {0} means that the seminorm |- |M is a
norm over the space V(w). The linear form L : V(w) — R and the bilinear
form By : V(w) x V(w) — R are clearly continuous with respect to this
norm. Besides,

Bu(m,m) > et ao(Inlh!)? for all n € V(w),

since there exist constants ¢, and ag such that

Z |taﬁ‘2 S CeaaBJT(y)taTtaﬂ
a?ﬁ
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for all y € @ and all symmetric matrices (t,3) and a(y) > ag > 0 for all
y € w. These properties remain valid on the space Vg\/l (w) since V(w) is by

construction dense in ng(w), again with respect to | - M. The conclusion
thus follows from the Lax—Milgram lemma. O

In order to get physically meaningful formulas, it remains to ‘de-scale’
the unknown ¢ that satisfies the limit ‘scaled’ problem Pﬁ/f(w) found in
Theorem 9.1. In view of the scaling u(e)(x) = uf(z°) for all 2° = 7z € O
made on the displacement field (Section 7), we are naturally led to defining
for each € > 0 the ‘limit’ vector field ¢ by letting

¢ =<

Recall that A\®* and p® denote for each € > 0 the actual Lamé constants
of the elastic material constituting the shell. We then have the following
immediate corollary to Theorems 9.1 and 9.2; naturally, the existence and
uniqueness results of Theorem 9.2 apply verbatim to the de-scaled problem
73?\2 (w) (for this reason, they are not reproduced here).

Theorem 9.3: The two-dimensional equations of a linearly elastic
‘generalized membrane’ shell. Let the assumptions and definitions not
repeated here be as in Theorems 9.1 and 9.2. Let

aaﬁaT,E — 4>‘EM€
’ M + 2¢

BS,(Cm) = ¢ / a7, (C)ras(m)Vady for ¢,m € V(w),

w

aaﬁaar + 2Ma(aaaaﬂr + aorraﬁa),

L) i= [ ¢ 5upm)vady for n € V()

e = e,

and let Bgf[ and Lg\fl denote the unique continuous extensions from V(w) to
ng(w) of the bilinear form Bj; and linear form L5,. Then the limit vector

field ¢® satisfies the following two-dimensional variational problem Pﬁf[(w)
of a linearly elastic generalized membrane shell:

¢¢ € V4, (w) and B% (¢5,m) = L% (n) for all n € V¥, (w).
Equivalently, the field ¢® satisfies the following minimization problem

¢t e Vg\/[(w) and ]Jﬁ&(ca) = inf jgi\f[(n), where
MEVi, (@)

, 1
() = 5351\2(77,77) — L (n). O
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Each one of the two formulations found in Theorem 9.3 constitutes the
two-dimensional equations of a linearly elastic generalized membrane shell.
The functional jﬁ; : ng(w) — R is the two-dimensional energy and the
functional

1
n € Vi (w) = 5 BY (n.m)

is the two-dimensional strain energy of a linearly elastic generalized mem-
brane shell. The functions a®?°7™¢ are the contravariant components of the
two-dimensional elasticity tensor of the shell, already encountered in the
two-dimensional equations of a linearly elastic elliptic membrane shell (The-
orem 8.3).

The bilinear form B?\Z found in the variational equations of a linearly
elastic generalized membrane shell is an extension of the bilinear form B,
already found in the variational equations of a linearly elastic elliptic mem-
brane shell (Theorem 8.3). Recall that both kinds constitute together the
linearly elastic membrane shells.

Under the essential assumptions that the space Vp(w) reduces to {0}
and that the forces are admissible, we have therefore justified by a con-
vergence result (Theorem 9.1) the two-dimensional equations of a linearly
elastic generalized membrane shell. In so doing, we have also justified the
formal asymptotic approach of Caillerie and Sanchez-Palencia (1995b) when
‘bending is badly inhibited’, according to the terminology of E. Sanchez-
Palencia.

The asymptotic analysis of Ciarlet and Lods (1996d) described in this
section has been extended by Slicaru (1998) to linearly elastic shells whose
middle surface ‘has no boundary’, such as a torus.

Among linearly elastic shells, generalized membrane shells possess dis-
tinctive characteristics that set them apart.

While forces applied to a family of elliptic membrane or flexural shells are
not subjected to any restriction (see Sections 8 and 10), body forces applied
to a family of generalized membrane shells can no longer be accounted for
by an arbitrary linear form of the form

vi=) = FooufVgE dat,
€

that is, with arbitrary contravariant components f“¢ € L?(Q¢). They must
be admissible for the three-dimensional equations, in order that the asso-
ciated scaled linear forms be in particular continuous with respect to the
norm

1/2
v — { > e (s v)l%,n}

2
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and uniformly so with respect to € > 0 (Section 9.2).

The linear form found in the variational equations of the limit two-dimen-
sional problem for such a shell is likewise subjected to a restriction. On the
dense subspace V(w) of the space Vt}w (w), it must be of the form

n%/@“ﬁvaﬁ(n)\/ﬁdy

(Theorem 9.1). In other words, the applied forces must also be admissible for
the two-dimensional equations, in such a way that the linear form appearing
therein must be an element of the dual space of V%\/[ (w).

As this dual space may be quite ‘small’, the limit variational problem,
which otherwise satisfies all the assumptions of the Lax—Milgram lemma
(Theorem 9.2), possesses the unusual feature that its solution may no longer
exist if the data undergo arbitrarily small, yet arbitrarily smooth, perturb-
ations! Another unusual feature of this problem is that the space Vg\/[ (w) in
which its solution is sought may not necessarily be a space of distributions!

Such variational problems fall in the category of ‘sensitive problems’ intro-
duced by Lions and Sanchez-Palencia (1994). Since then, such problems have
been extensively studied. See, in particular, Lions and Sanchez-Palencia
(1996, 1997a,b, 1998, 2000), Pitkdranta and Sanchez-Palencia (1997), San-
chez-Palencia (1999, 2000), Leguillon, Sanchez-Hubert and Sanchez-Palencia
(1999), Delfour (1999).

Examples of linearly elastic generalized membrane shells are numerous
and, in this respect, those given in Section 9.1 constitute only a small sample.
In each case, however, the proof that the space Vp(w) reduces to {0}, the
identification of the corresponding space V%w(w), and the identification of
‘admissible’ applied forces usually require delicate analyses. In this respect,
see notably Sanchez-Hubert and Sanchez-Palencia (1997, Chapter 7, Sec-
tions 2 and 4), Lions and Sanchez-Palencia (19975, 1998), Karamian (1998b),
Lods and Mardare (1998a), Mardare (1998¢), Gérard and Sanchez-Palencia
(2000).

The occurrence of boundary layers in generalized membrane shells is stud-
ied in Karamian, Sanchez-Hubert and Sanchez-Palencia (2000).

10. ‘Flexural’ shells

A shell with middle surface S = 0(@), subjected to a boundary condition
of place along a portion of its lateral face with 6(~y), where 79 C 7, as its
middle curve, is called a linearly elastic ‘flexural’ shell if its associated space

Vi) = {n1= (n) € H() x H'() x H2(w)
1n; = 0yn3 = 0 on ’70370[5(77) =0in w}

contains nonzero functions.
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The purpose of this section is to identify and to mathematically justify the
two-dimensional equations of a linearly elastic flexural shell, by showing how
the convergence of the three-dimensional displacements can be established
in ad hoc function spaces as the thickness of such a shell approaches zero.

10.1. Definition and examples

Let w be a domain in R? with boundary v and let 8 € C?(w;R3) be an
injective mapping such that the two vectors 0160(y), 020(y) are linearly in-
dependent at every point y € @. A shell with middle surface S = 6(w) is
called a linearly elastic ‘flexural’ shell if the following two conditions are
simultaneously satisfied.

(i) The shell is subjected to a (homogeneous) boundary condition of place
along a portion of its lateral face with @(7p) as its middle curve (i.e., the
displacement vanishes on this portion), where the subset vy C 7y satisfies

length v9 > 0.
(i) Define the space

Vi) :={n= )€ H(w) x H'(w) x H*(w) :
i = 81/773 =0 on 70)7&6(7]) =01in w}

(0, denoting the outer normal derivative operator along ). Then the space
V(w) contains nonzero functions; equivalently,

Vr(w) # {0}
We recall that the functions

1
Yap(n) = 5(86’?7@ + 9anp) — Tagno — bapns

denote the covariant components of the linearized change of metric tensor
associated with a displacement field n;a’ of the surface S.

In other words, there exist nonzero admissible linearized inextensional dis-
placements n;a’ of the middle surface S. ‘Admissible’ means that they
satisfy two-dimensional boundary conditions of clamping along the curve
0(70), expressed here by means of the boundary conditions 7; = 9,13 on g
on the associated field n = (7;) (these boundary conditions will be inter-
preted later). ‘Linearized inextensional’ indicates that the functions v,5(n)
are the linearizations with respect to m = (1;) of the covariant components
of the exact change of metric tensor associated with a displacement field
n;a’ of the surface S; cf. Section 4.

A shell whose middle surface S = () is a portion of a cylinder and which
is subjected to a boundary condition of place (i.e., of vanishing displacement
field) along a portion (solid black in the figure) of its lateral face whose
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/-t
i

Fig. 10.1. Linearly elastic ‘flexural’ shells

middle curve () is contained in one or two generatrices of S provides
an instance of a linearly elastic flezural shell, that is, one for which the
associated space Vg (w) contains nonzero functions n; see Figure 10.1. The
two-dimensional boundary conditions of clamping n; = d,n3 = 0 on =y that
will eventually be inherited by the limit two-dimensional equations are so
named because they mean that the points of, and the tangent spaces to, the
deformed and undeformed middle surfaces coincide along the set 8(vp), as
suggested in the ‘two-dimensional’ figures.

A shell whose middle surface S = 6(@) is a portion of a cone excluding
its vertex and which is subjected to a boundary condition of place along
a portion (solid black in the figure) of its lateral face whose middle curve
0(~o) is contained in one generatrix of S provides another example of a
linearly elastic flezural shell, since again Vp(w) # {0} in this case. See
Figure 10.2, where the two-dimensional boundary conditions of clamping
inherited by the limit two-dimensional equations are again suggested in the
‘two-dimensional’ figure.

Incidentally, a comparison with the cylindrical and conical shells shown in
Figure 9.2 illustrates the crucial role played by the set 8(7g) in determining
the type of shell!

A plate, subjected to a boundary condition of place along any portion
(solid black in the figure) of its lateral face whose middle line 7y satisfies
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[ [

Fig. 10.2. Another example of a linearly elastic ‘flexural’ shell

[/ ]

Fig. 10.3. Another example of a linearly elastic ‘flexural’ shell: a plate

length v9 > 0, provides an instance of a linearly elastic flexural shell since

Vi(w) D {n=(0,0,n3) : 3 € H3(w)} # {0}

in each case. See Figure 10.3, where the two-dimensional boundary condi-
tions of clamping inherited by the limit two-dimensional equations are again
suggested in the ‘two-dimensional’ figures.
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The definition of a linearly elastic flexural shell thus depends only on the
subset of the lateral face where the shell is subjected to a boundary condition
of place (via the set 7p) and on the geometry of the middle surface of the
shell.

10.2. Conwvergence of the scaled displacements as the thickness
approaches zero

We now establish the main results of this section. Consider a family of
linearly elastic flexural shells with thickness 2e > 0, with each having the
same middle surface S = 6(w), and with each subjected to a boundary
condition of place along a portion of its lateral face having the same set 0(~p)
as its middle curve, the assumptions on the data being as in Theorem 10.1
below.

Then the solutions u(e) of the associated scaled three-dimensional prob-
lems P(¢;9Q) (Theorem 7.1) converge in H'(Q2) as ¢ — 0 toward a limit
w and this limit, which is independent of the transverse variable x3, can
be identified with the solution @ of a two-dimensional variational problem
Pr(w) posed over the set w.

The functions v,5(n) and pag(n) appearing in the next theorem respect-
ively represent the covariant components of the linearized change of metric
and linearized change of curvature tensors associated with a displacement
field n;a’ of the middle surface S.

Note that the assumption on the applied body forces made in the next
theorem corresponds to letting a = 2 in Theorem 7.1. That a = 2 is indeed
the ‘correct’ exponent in this case can be justified in two different ways.

It is easily checked that this choice is the only one that lets the applied
body forces enter (via the functions p’) the right-hand sides of the variational
equations in the ‘limit’ variational problem Pp(w) satisfied by w.

Otherwise, the number a can be considered a priori as an unknown. Then
a formal (but careful!) asymptotic analysis of the scaled unknown w(e) shows
that, for a family of linearly elastic flexural shells, the exponent a must be
set equal to 2, again in order that the applied body forces contribute to the
‘limit’ variational problem; c¢f. Miara and Sanchez-Palencia (1996).

The next result is due to Ciarlet, Lods and Miara (1996, Theorem 5.1); a
complete proof is also given in Ciarlet (2000, Theorem 6.2-1).

Theorem 10.1: Convergence of the scaled displacements. Assume
that @ € C3(w;R?). Consider a family of linearly elastic flexural shells with
thickness 2e approaching zero, with each having the same middle surface
S = 6(w), and with each subjected to a boundary condition of place along
a portion of its lateral face having the same set 6(yy) as its middle curve.
Further, assume that there exist constants A > 0 and g > 0 and functions
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ft € L?(Q) independent of € such that
M =X and uf =y,
o (af) = e f(x) forall a° =7z € QF
(the notation is that of Section 7).

Let u(e) denote, for sufficiently small £ > 0, the solution of the associated
scaled three-dimensional problem P(e;§2) (Theorem 7.1). Then there exists
u € HY(Q) satisfying u = 0 on T'g = ¢ x [—1, 1] such that

u(e) — u in H(Q) as ¢ — 0,

where w = (u;) is independent of the transverse variable x3.

Furthermore, the average uw := % filudxg satisfies the following two-
dimensional variational problem Pp(w):
u= (7)€ Vpw):={n=(m) € H(v) x H'(w) x H*(w) :

n; = 0yn3 = 0 on ’Yo,’yaﬁ(n) =01in w},
1 afor — i
3/a b Por(u)Paﬁ(n)\/ZldyZ/pm\/&dy

for all n = (1) € Vp(w). Here

1
Vaﬁ(n) = 5(6ﬁ77a + 80:”5) - Fgﬁna — bagn3,

paﬁ(n) = 804,6773 - Fglgaanii - bgboﬁnfﬂ + bg(aﬂna - FEJUT)
+ bﬁ (Oanr — Lorn0) + (30% + FEabg - Fg,@bg)nﬂ
4
qoBoT . — ) +guaaﬁaaﬂ' + QM(aaaaﬁT + aaTaﬁO’),

1
pZ = / fl dxg.
-1

Sketch of proof. (i) The proof rests on the same crucial three-dimensional
inequality of Korn’s type that was already needed for the asymptotic analysis
of ‘generalized membrane’ shells (Theorem 9.1). For a family of linearly
elastic shells, with each having the same middle surface S = 6(w), and with
each subjected to a boundary condition of place along a portion of its lateral
face having the same set 6(vg) as its middle curve, there exists a constant
C such that, for sufficiently small ¢ > 0,

c 1/2
v|l0 < 5{ Z |ei|j(55v)’%,ﬂ}

,L'7j

for all v € V(Q), where
V(Q)={veHYQ):v=0o0n x [-1,1]},
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and the functions e j(e;v) are the scaled linearized strains appearing in
Theorem 7.1.

(ii) Letting v = u(e) in the variational equations of problem P(g;2) (The-
orem 7.1) and using the three-dimensional inequality of Korn’s type used in
(i), we obtain a chain of inequalities showing that the norms |u(e)|1,o and
\%ei”j(s; u(€))]o,o are bounded independently of e.

Thus there exists a subsequence, still denoted by (u(g))e>¢ for notational
convenience, such that

u(e) — w in HY(Q), and thus u(e) — w in L?(Q),

1 .

g€i||j(5§ u(e)) — eil”j in L2(Q).
(iii) The above convergence, combined with the asymptotic behaviour of
the functions T');(¢), AY M(g), and g(¢), then implies that the vector field u

is independent of x3. Further, the average u = %f_ll w dxs belongs to the

space V(w), and the field w and the functions ez.lnj are related by

~seq5 = Pas(u),

af

1 _ 1 _ 1
oz = 0, €33= €al6-

A+ 2,ua
(iv) In the variational equations of problem P(g;2), let v = (v;(¢)), where
the functions v;(e) are of the form

Vo (€) = Na — ex3(0am3 + 2b91,) and v3(e) = n3

for some fized n = (1;) in the space Vp(w), and let e approach zero. Then
the asymptotic behaviour of the functions A%*!(¢) and g(e), combined with
the relations found in (iii), shows that the average w € V p(w) indeed satisfies
the variational equations of the two-dimensional problem Pr(w) stated in
the statement of the theorem.

The solution to Pr(w) being unique, the convergence u(e) — u in H'(Q)
and u(g) — w in L?(f) established in (ii) for a subsequence thus holds for
the whole family (u(g))eso0.

(v) Again letting v = u(e) in the variational equations of P(e;2) and using
the results obtained in (ii)—(iv), we obtain the strong convergence

1 .
el ule) = ey in L(9),
which in turn implies that
u(e) — u in HY(Q),

as was to be proved. O
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10.3. The two-dimensional equations of a linearly elastic ‘flexural’ shell

The next theorem recapitulates the definition and assembles the main fea-
tures of the ‘limit’ two-dimensional variational problem Pp(w) found at the
outcome of the asymptotic analysis carried out in Theorem 10.1.

Theorem 10.2: Existence and uniqueness of solutions. Let w be a
domain in R?, let 7y be a subset of the boundary of w with length v9 > 0,
and let @ € C3(w;R3) be an injective mapping such that the two vectors
ao = 0,0 are linearly independent at all points of @ and such that

= {n=(m) € H'(w) x H'(w) x H*(w) :
n; = ,,773—001’1 7077&,@(7’)2011’1 w} 75{0},

where
1
Yap(M) = 5(9pna + Banip) = Lapis — basns-

The associated two-dimensional variational problem Pp(w) found in The-
orem 10.1 is as follows. Given p’ € L?(w), find ¢ = ({;) satisfying

¢ €Vp(w),
1

3 /w a®P77 por(C)pap(n)vady = /w p'nivady

for all n = (1;) € Vp(w), where

Pa,@(’?) = 0apBM3 — Pgﬁaanii - bgboﬁn?: + bg(aﬂna - F%an’l')
+ bﬁ(aanr —Tome) + (5ab2 + szbg - Fggbg)m,
A p
A+ 2
This problem has exactly one solution, which is also the unique solution of

the minimization problem:
Find ¢ such that

afor . _

a aaﬂaa’r + 2# (aaaaﬂT + aaTaﬁcr) )

¢ € Vp(w) and jp(¢)= inf jp(n), where
NEVE(w)

/ a7 por(0) pap(n )\fdy—/pinix/&dy-

Proof. The existence and uniqueness of a solution to the variational prob-
lem Pr(w), or to its equivalent minimization problem, is a consequence of
the inequality of Korn’s type on a general surface (Theorem 4.4), of the
existence of constants ¢, and aq such that

Z |tozﬁ|2 < CeaaﬂgT(y)taﬂ'tuﬁ
a7ﬁ

CTJ\)—t
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for all y € @ and all symmetric matrices (t,3) and a(y) > ag > 0 for all
y € w, and of the Lax—Milgram lemma. (]

The minimization problem encountered in Theorem 10.2 (or that in The-
orem 10.3 below in its ‘de-scaled’ formulation) provides an interesting ex-
ample of a minimization problem with ‘equality constraints’, namely the
relations

Yag(m) = 0 in w

to be satisfied by the elements 1 of the space Vp(w) over which the func-
tional is to be minimized.

In order to get physically meaningful formulas, we must ‘de-scale’ the
unknowns (; that satisfy the limit ‘scaled’ problem Pp(w) found in The-
orem 10.2. In view of the scalings u;(¢)(z) = u$(2®) for all 2° = n°z € O
made on the covariant components of the displacement field (Section 7),
we are naturally led to defining, for each £ > 0, the covariant components
¢; : w — R of the ‘limit displacement field’ Cfai : W — R3 of the middle
surface S of the shell by letting

G =G

(the vectors a’ forming the contravariant basis at each point of S).

Like those found in the analysis of linearly elastic elliptic membrane shells
(Section 8), the fields ¢° := (¢f) and (fa’ must be carefully distinguished!
The former is essentially a convenient mathematical ‘intermediary’, but only
the latter has physical significance.

Recall that f%¢ € L?() represent the contravariant components of the
applied body forces actually acting on the shell and that A* and p® denote
the actual Lamé constants of its constituent material. We then have the
following immediate corollary to Theorems 10.1 and 10.2; naturally, the
existence and uniqueness results of Theorem 10.2 apply wverbatim to the
solution of the ‘de-scaled’ problem P (w) found in the next theorem (for
this reason, they are not reproduced here).

Theorem 10.3: The two-dimensional equations of a linearly elastic
‘flexural’ shell. Let the assumptions on the data and the definitions of the
functions v,3(n) and pag(n) be as in Theorem 10.2. Then the vector field
¢ = (¢f) formed by the covariant components of the limit displacement
field (fa' of the middle surface S satisfies the following two-dimensional
variational problem Pj.(w) of a linearly elastic flexural shell:

CFEVR(Ww):={n=(n) € H(w) x H'(w) x H*(w) :
i = Oyn3 = 0 on Y0,%ap(n) = 0 in w},

53 afoT,e 5 %,E
3/a P77 por (C%) pap(m)Va dy = /p’ nivady
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for all n = (n;) € Vp(w), where

afore .__ 4)‘5N€ af ot e( ao Bt at [Bo
a .—maa +2u°(a®?a”" + a“Ta"?),

£
ph® ::/ foedas.

3

Equivalently, the field {* = (¢7) satisfies the minimization problem
¢ € Vi(w) and j5(¢) = inf ja(n), where
NEVr(w)

63

G = [ @ g mpasm)vady - [ penvady. O

Each one of the two formulations found in Theorem 10.3 constitutes the
two-dimensional equations of a linearly elastic flexural shell.

We recall that the condition Vp(w) # {0}, which is the basis of the
definition of a linearly elastic flexural shell, means that there exist nonzero
‘admissible linearized inextensional displacements’ of the middle surface,
since the functions v,4(n) used in the definition of Vg (w) are the covari-
ant components of the linearized change of metric tensor associated with
a displacement field n;a’ of the middle surface S; ‘admissible’ means that
the fields n = (7;) € Vp(w) must also satisfy the boundary conditions
ni = Oyn3 = 0 on 7. ,

In order to interpret these boundary conditions, let n;a’ be a displacement
field of the middle surface S = 6(w) with smooth enough, but otherwise
arbitrary, covariant components 7; : @ — R. The tangent plane at an
arbitrary point 8(y)+n;(y)a'(y),y € @, of the deformed surface (8-+n;a’)(w)
is thus spanned by the vectors

9a (0 +mia’)(y) = aa(y) + dami(y)a’ (y) + ni(y)0aa’ (y),

if these are linearly independent. Since

i =0m3=0o0ny = 1 = 0,n3 =0 on v,
it follows that

0(y) +ni(y)a'(y) = 6(y) for all y € yo,
0a(0 +m;a")(y) = an(y) + 8ang(y)a5(y) for all y € .

These relations thus show that the points of the deformed and undeformed
middle surfaces, and their tangent spaces at those points where the vectors
0 (0 + m;a’) are linearly independent, coincide along the set (). Such
‘two-dimensional boundary conditions of clamping’ are suggested in Figures
10.1 to 10.3.

The functions p,g(n) are the covariant components of the linearized change
of curvature tensor associated with a displacement field n;a’ of the middle
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surface S and the functions a®?°7¢ are the contravariant components of the
two-dimensional elasticity tensor of the shell, already encountered in the
two-dimensional equations of linearly elastic elliptic membrane and general-
ized membrane shells (Theorems 8.3 and 9.3).

Finally, the functional j% : Vp(w) — R is the two-dimensional energy and

the functional 5
€

ne Vi)~ 5 [ a5 mpaatn)Vady

is the two-dimensional strain energy of a linearly elastic flexural shell.

Under the essential assumptions that the space Vp(w) contains nonzero
elements, we have therefore justified by a convergence result (Theorem 10.1)
the two-dimensional equations of a linearly elastic flexural shell. In so doing,
we have justified the formal asymptotic approach of Sanchez-Palencia (1990)
(see also Miara and Sanchez-Palencia (1996) and Caillerie and Sanchez-
Palencia (1995b)) when ‘bending is not inhibited’, according to the termin-
ology of E. Sanchez-Palencia.

Due credit should be given in this respect to Sanchez-Palencia (1989a) for
recognizing the central role played by the space Vp(w) in the classification
of linearly elastic shells.

The above convergence analysis also substantiate an important observa-
tion. In a flezural shell, body forces of order O(g?) produce an O(1) limit
displacement field. By contrast, body forces of order O(1) are required to
also produce an O(1) limit displacement field in an elliptic membrane shell;
cf. Section 8.

Membrane and flexural shells thus exhibit strikingly different limit beha-
viour!

After the original work of Ciarlet, Lods and Miara (1996) described in this
section, the asymptotic analysis of linearly elastic flexural shells underwent
several refinements and generalizations, which include another proof of The-
orem 10.1 by means of I'-convergence theory (Genevey 1999), an asymptotic
analysis of linearly elastic flexural shells with variable thickness (Busse 1998)
or made with a nonhomogeneous and anisotropic material (Giroud 1998),
the convergence of the stresses and the explicit forms of the limit stresses
(Collard and Miara 1999), and an asymptotic analysis of the associated ei-
genvalue problem (Kesavan and Sabu 2000) and time-dependent problem
(Xiao Li-Ming 200x a).

11. Koiter’s equations

Founding his approach on a priori assumptions of a geometrical and mechan-
ical nature about the three-dimensional displacements and stresses when the
thickness is ‘small’, W. T. Koiter proposed in the sixties a two-dimensional
shell model that has quickly acquired widespread popularity within the com-
putational mechanics community.
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After briefly describing the genesis of these equations, which were en-
countered in Section 4, we review in this section their main mathematical
properties, such as the existence, uniqueness, and regularity of their solu-
tion, or their formulation as a boundary value problem. We also show how
they can be extended to shells whose middle surface has little regularity and
we describe the closely related Budiansky—Sanders equations.

It is remarkable that Koiter’s equations can be fully justified for all types
of shells, even though it is clear that these equations cannot be recovered as
the outcome of an asymptotic analysis of the three-dimensional equations,
since Sections 8 to 10 have exhausted all such possible outcomes!

More specifically, we also show in this section that, for each category of
linearly elastic shells (elliptic membrane, generalized membrane, or flexural),
the solution of Koiter’s equation and the average through the thickness of
the three-dimensional solution have the same asymptotic behaviour in ad
hoc function spaces as ¢ — 0.

So, even though Koiter’s linear model is not a limit model, it is in this
sense the ‘best’ two-dimensional one for linearly elastic shells!

11.1. Genesis; existence, uniqueness, and reqularity of solutions;
formulation as a boundary value problem

Let w be a domain in R? with boundary -, let @ € C3(w;R?) be an injective
mapping such that the two vectors a, = 9,0 are linearly independent at all
points of w, and let 79 be a portion of v that satisfies length ~q > 0.

Consider as in the previous sections a linearly elastic shell with middle
surface S = 0(w) and thickness 2¢ > 0, that is, a linearly elastic body whose
reference configuration is the set @(Q°), where

OF 1= wx] —eg,¢],
Oy, 5) = 6(y) + z5as(y) for all (y,25) € .

The material constituting the shell is homogeneous and isotropic and the
reference configuration is a natural state, so that the material is characterized
by its two Lamé constants A* > 0 and pu® > 0. The shell is subjected to a
boundary condition of place along the portion ®(I') of its lateral face, where
I'§ := 10 X [—¢,¢], that is, the three-dimensional displacement vanishes on
O(T). Finally, the shell is subjected to applied body forces in its interior
©(99), their densities being given by their contravariant components f“¢ €
L2(0).

In a seminal work, John (1965, 1971) showed that, if the thickness of such
a shell is small enough, the state of stress is ‘approximately planar’ and the
stresses parallel to the middle surface vary ‘approximately linearly’ across
the thickness, at least ‘away from the lateral face’. In Koiter’s approach
(Koiter 1960, 1966, 1970), these approximations are taken as an a priori
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assumption of a mechanical nature and combined with another a priori
assumption of a geometrical nature, called the Kirchhoff-Love assumption:
any point on a normal to the middle surface remains on the normal to
the deformed middle surface after the deformation has taken place and the
distance between such a point and the middle surface remains constant. In
fact, this assumption is required to hold only ‘to within the first order’ in
the linearized theory considered in this section.

Taking these two a priori assumptions into account, Koiter then shows
that the displacement field across the thickness of the shell can be completely
determined from the sole knowledge of the displacement field of the middle
surface S, and he identifies the two-dimensional problem, that is, posed over
the two-dimensional set w, that this displacement field should satisfy. As
in the two-dimensional theories encountered so far, the unknown is a vector
field, now denoted by (% = ((f ) : @ — R?, whose components (5 : w — R
are the covariant components of the displacement field of the middle surface
S. This means that (f (y)a'(y) is the displacement of the point 6(y); see
Figure 11.1.

In their linearized version, the equations found by Koiter consist in solving
the following variational problem Pj (w):

Find (% = (Cf ;) such that

C € Vi(w) :={n=(m) € H'(v) x H'(w) x H*(w) :
ni = 0ynz =0 on Yo},

3
afot € apoT
[ {5 Goastm) + a5 par (G5l
= / P niv/ady

for all n = (n;) € Vg (w), where

aaﬁm’,e . 4>‘€M8 aaﬁa07+2 a(aaaa57+aa7aﬁa)
L )\E+2ME /’L b

1 ag
’Yozﬁ(n) = 5(867701 + aanﬁ) - Faﬁna — bapms,

paﬁ(n) = Oapl)3 — 1_2580773 - bgbaﬁnii
+ b5 (9815 — To1r) + b5(0attr — I'arn0)
+ (8abg + F;O.bg — Fgﬁb;)nf,
pi,s = ‘ fi,s dCE‘g

—€

(the functions a®B, bap, b3 155, and a defined as usual: see Section 4).
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¥

0

Fig. 11.1. The three unknowns in Koiter’s equations are the covariant
components ¢ j : @ — R of the displacement field (iKai :w — R? of
the middle surface S; this means that, for each y € @, (f x(y)a'(y) is
the displacement of the point O(y) € S

The functions v,4(n) and p,3(n) are the customary covariant components
of the linearized change of metric and linearized change of curvature tensors
associated with a displacement field 7;a’ of the middle surface S and the
functions a®?°7¢ are the customary contravariant components of the two-
dimensional elasticity tensor of the shell.

Note that Destuynder (1985, 1990) has found an illuminating way of de-
riving the same linear Koiter equations from three-dimensional elasticity,
which uses a priori assumptions only of a geometrical nature. Note also
that the linearized Kirchhoff-Love assumption has been a posteriori justi-
fied for linearly elastic elliptic membrane shells by Lods and Mardare (19980,
20000).
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The existence and uniqueness of a solution to problem Pj (w), which es-
sentially follow from the Vg (w)-ellipticity of the bilinear form, was first
established by Bernadou and Ciarlet (1976); a more natural proof was sub-
sequently proposed by Ciarlet and Miara (1992b), then combined with the
first one in Bernadou, Ciarlet and Miara (1994). The existence and unique-
ness of the solution to the time-dependent Koiter equations have recently
been established by Xiao Li-Ming (1999).

Theorem 11.1: Existence and uniqueness of solutions. Let w be
a domain in R?, let vy be a subset of v = dw with length 9 > 0, and let
0 c C3(w;R3) be an injective mapping such that the two vectors a, = 9,0
are linearly independent at all points of w.

Then the variational problem Pj (w) has exactly one solution, which is
also the unique solution to the minimization problem:
Find (% = (Cf ;) such that

(% € Vi (w) and j% (%) = inf j%(m), where
nEV K (w)

1 oT.
=3 / wo‘ﬁ “Yor (M) Vap (M)
w

+< 3 a7 por () pap(n )}fdy /p”gmx/&dy-
w

Proof. The assumptions f¢ € L?(Q¢) imply that p** € L?(w). The ex-

istence and uniqueness of a solution to the variational problem Pj (w), or

to its equivalent minimization problem, are consequences of the inequality

of Korn’s type on a general surface (Theorem 4.4), of the existence of a

constant ¢, such that

D ftapl* < a7 (y)trtag

for all y € @ and all symmetric matrices (t,g), of the existence of ag such
that a(y) > ag > 0 for all y € W, and of the Lax—Milgram lemma. O

We next derive the boundary value problem that is (at least formally)
equivalent to Koiter’s variational problem Pj-(w). We also state a regularity
result that provides instances where the weak solution (the solution to the
variational problem) becomes a classical solution (a solution to the boundary
value problem).

Theorem 11.2: Regularity of solutions; formulation as a boundary
value problem. (a) Assume that the boundary 7 of w and the functions
p© are sufficiently smooth. Then, if the solution (5 = (Cf(,) to the vari-
ational problem Pj (w) (Theorem 11.1) is sufficiently smooth, it is also a
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solution to the following boundary value problem:
m o = Wbasm®* —bagn* = p** inw,
(0 bm g — B (mTPg) = p in
G =0 = 0 on o,
maﬁ’eual/,g = 0 on 71,

(m*P€|)vg + 9-(m*Pvem3) = 0 on 7,

(n®P€ + 202m7P€)vs = 0 on 7,

where 1 1= v — 70, (Vo) is the unit outer normal vector along v, 7 :=
—Uo, Ty := vy, 070 := 17,0,0 denotes the tangential derivative of 6 in the
direction of the vector (74),

3

S
na,@,e . gaaﬁch,s,yo_T(C%)’ maﬁ,s = ?aaﬁm—’spaﬂ'(c%{),

and finally, for an arbitrary tensor with twice differentiable covariant com-
ponents n®?,

n|5 == 9sn*F + Fganﬁg + Fggnag,
1% ag = 9a(n|5) + T3, (n"|).
(b) Assume that v = 79 and that, for some integer m > 0 and some real
number ¢ > 1, v is of class C™*4, 8 € C"4(w; R3), p*¢ € W™H4(w), and
p>¢ € W™4(w). Then
i = (¢F) € W29 (w) x W34 (w) x W9 (w).

Proof. For brevity, we give the proof of (a) when 7 =+, in which case

Vi (w) = Hy(w) x Hy(w) x H§(w),

and we omit the exponents ‘e’ and the indices ‘K’ throughout the proof,
that is, we let

1 ) ,
Ci=Cio n™ = a0 (Q), = 20 (Q), B =

Assume that the solution ¢ is smooth in the sense that n®? € H'(w) and
m*P € H?(w).
We have already seen in the proof of Theorem 8.2 that

/ 007 (C ) () dy = — / Va{ (0P| ) + bagn®ns} dy

for all n = (7;) € H}(w) x H}(w) x L?(w), hence a fortiori for all n €
Hi(w) x H}(w) x HZ(w). It thus remains to transform the other integral
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appearing on the left-hand side of the variational equations, that is,
5 ] @ o Qpaptm)ady = [ m st Vady
= / Vam®™8,s13 dy
/ Vam® (2b 03N — aﬁ&mg) dy
/ Vam®(— 2%, 1 + Wl — Bbogns) dy,
where n = (1;) € Hj(w) x H} (w) x HZ(w). Using the symmetry m®? = mf,

the relation dgy/a = \/al'3,, and Green’s formula in Sobolev space, we
obtain

/mo‘ﬁpag(n)\/&dy = —/ Va(9sm®? +T%,m* +T%3m%)dans dy
+ 2/fm°‘ﬁb Opne dy
/ Vam®® (=2B5T%, 1, + blamio — bbogs) dy.
The same Green’s formula shows that
—/ ﬁ(@gmaﬂ —Fl“ggmal3 +F§5m"5)8a773 dy
= —/‘U\/@(maﬁlﬁ)é’anzady—/waa(x/&maﬁ\ﬂ)n:ady
= /ﬁ(maﬁlaﬁ)%dy,
/fm“ﬁb"aﬁnady——2/f{0ﬂ (b5m®?) + T5,b5m* Yy dy.
Consequently,
[ mpaatmvady = [ Va{=20m) s+ 05lom" Yo dy
+ /\/&{ma’gla,@ — 0bom™ g3 dy.

Using in this relation the easily verified formula

(bgm??)|s = (B51o)m” + b3 (m”’|5)
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and the symmetry b% |U = b%|3, we finally obtain

/ m® pag(m)vady = — / Val{ (02m®)]5 + b2 (m®|5) Yo dy
—/ﬁ{bgbaﬁmaﬁ—maﬂ|ag}n3 dy.

Hence the variational equations

/ {aaﬁﬂ%T(c)%ﬁ(m + %a“ﬁ‘”pm(C)pafJ(n) - pini}\/ﬁ dy =0

imply that
Va{(n® +b3m7)| 5+ b3(m?|5) + p* }na dy
w

+/ \/a{bozﬁnaﬁ + bgbaﬁmaﬁ - maﬂ|aﬂ +p3}773 dy =0
w

for all (n;) € H(w) x H(w) x HE(w). The stated partial differential equa-
tions are thus satisfied in w.
The regularity result of part (b) is due to Alexandrescu (1994). O

Note that the functions n®’|g and m®’|,3 appearing in the boundary
value problem are instances of first-order and second-order covariant deriv-
atives of tensor fields, defined here by means of their contravariant com-
ponents n®? or m®. The covariant derivatives n®| 3 also occurred in the
boundary value problem associated with a linearly elastic elliptic membrane
shell (Theorem 8.2).

Each one of the three formulations found in Theorems 11.1 and 11.2 con-
stitutes the two-dimensional Koiter equations for a linearly elastic shell. We
recall that the functions v,3(n) and po3(n) are the covariant components of
the linearized change of metric and change of curvature tensors associated
with a displacement field n;a’ of the middle surface S, the functions a®?77¢
are the contravariant components of the two-dimensional elasticity tensor of
the shell. The functions n®?¢ and m®® are the contravariant components
of the stress resultant and stress couple, or bending moment, tensor fields.

As shown at the end of Section 10, the ‘two-dimensional boundary condi-
tions of clamping’ (f ; = 0,(j 3 = 0 on 7o state that the points of, and the
tangent spaces to, the deformed and undeformed middle surfaces coincide
along the set 0(70), as suggested in Figure 11.1.

The functional j% : Vg (w) — R in Theorem 11.1 is the two-dimensional
Koiter energy of a linearly elastic shell. The associated Koiter strain energy,

1
ne€Vg(w) — 5 / {w“ﬂ‘”’%f(n)vw(n)
w

3

+ 5 () paa(m) f Va dy,



188 P. G. CIARLET

is thus the sum of the strain energies of a linearly elastic elliptic membrane
shell (Section 8) and of a linearly elastic flexural shell (Section 10).

Finally, note that the partial differential equations in w together with
the boundary conditions on ~; found in Theorem 11.2 may be viewed as
two-dimensional equations of equilibrium, while the equations relating the
unknown €% and the functions n®%¢ and m®%* may be viewed as two-
dimensional constitutive equations.

11.2. Justification of Koiter’s equations for all types of shells

When it is viewed as a three-dimensional body, the linearly elastic shell
described at the beginning of this section is modelled by the variational
problem P(Q°) that constituted the point of departure of the asymptotic
analyses of Sections 8 to 10. This problem, described in Section 7.1, consists
in finding w® = (u;) such that

uf € V(QF) = {v° = (v5) € H(Q°) : v° = 0 on T§},
/5 Aijkl’aeiw(ua)ef”j(va)\/gifdacs = /QE fofufy/gf dat
for all v® € V(QF), where
Aijkl,a — )\agij,egkl,a + Ma(gikz,agjl,a + gil,a jk,a)
1
ej; (v°) = i(ﬁjvf + O5v5) — T (v°)

(all notation not redefined here is defined in Section 7.1).

The unknown functions u$ in problem P(§2°) represent the covariant com-
ponents of the displacement field ujgi’e of the points of the reference con-
figuration ©(Q°); see Figure 7.1.

Now consider a family of such linearly elastic shells, with each having
the same middle surface S = 8(w), and with each subjected to a boundary
condition of place along a portion of its lateral face having the same set 0(~p)
as its middle curve. All the linearly elastic shells in such a family are thus
either elliptic membrane, or generalized membrane, or flexural, according to
the definitions given in Sections 8, 9, and 10. Assume that the assumptions
on the data are in each case those that guarantee the convergence of the
scaled displacements as the thickness approaches zero (Theorems 8.1, 9.1,
and 10.1).

It is then remarkable that, in each case, the asymptotic behaviour ase — 0
of the average i fi: u® dz§ of the solution to the three-dimensional vari-
ational problem P(€°) and of the solution (% to the two-dimensional Koiter
equations formulated as the variational problem Py (w) (Theorem 11.1) are
identical.
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To see this, we proceed as in Ciarlet and Lods (1996¢, Theorems 2.1 and
2.2) and (1996d, Theorems 6.1 and 6.2). We compare the convergence the-
orems established in Sections 8, 9, and 10 with former results of Destuynder
(1985), Sanchez-Palencia (1989a, 19895, 1992), and Caillerie and Sanchez-
Palencia (1995a) (see also Caillerie (1996)) about the asymptotic behaviour
of the solution of Koiter’s equation as ¢ approaches zero.

The forthcoming analyses have been recently extended by Xiao Li-Ming
(200x b), who likewise justified the time-dependent Koiter equations for el-
liptic membrane and flexural shells.

To begin with, we consider elliptic membrane shells, as defined in Sec-
tion 8.1.

Theorem 11.3: Justification of Koiter’s equations for ‘elliptic mem-
brane’ shells. Assume that 8 € C?(w;R3). Consider a family of linearly
elastic elliptic membrane shells, with thickness 2e approaching zero and with
each having the same elliptic middle surface S = 6(w), and let the assump-
tions on the data be as in Theorem 8.1 (in particular, vo = 7).

For each € > 0 let

(uf) € HY(Q%) and Ci = (G i) € Hy(w) x Hy(w) x Hi(w)

respectively denote the solutions to the three-dimensional and two-dimen-
sional variational problems P(€°) and Pj (w). Also, let

¢ = (G) € Hy(w) x Hy(w) x L*(w)

denote the solution to the two-dimensional ‘scaled’ variational problem Pj(w)
(Theorem 8.2), a solution which is thus independent of €. Then

1 [® 1 [*

— [ wfda§ — (,in HY(w) and — [ w§daz§ — G in L (w),

2 J_. 2e J_.

Cka — Cain Hl(w) and (j 3 — (3 in L2(w).

Proof.  Under the assumptions that there exist constants A > 0 and p >0
and functions f* € L?(f2) independent of € such that

A=) and uf=up,
o5 (2f) = fi(x) forall 2f =7z e QF
(these are the assumptions on the data for a family of linearly elastic elliptic
membrane shells) and that 8 € C3(w;R?), then
1 €

1 M
— [ wugda§ = / e (e) dzg — (o in HY (w)
2e —€ -1

2

and

1/ . . 1t I
% uzdz§ = - ug(e)dzs — (3 in L (w)
€ J_¢ 2/,
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as ¢ — 0 are easy corollaries to the fundamental convergence result of The-
orem 8.1.

The convergence (5 — ¢ in H'(w) x H'(w) x L?(w) was first established
by Destuynder (1985, Theorem 7.1); it was also noted by Sanchez-Palencia
(19894, Theorem 4.1) (see also Caillerie and Sanchez-Palencia (1995a)), who
observed that it is a consequence of general results in perturbation theory,
as found for instance in Sanchez-Palencia (1980). We give here a simple and
self-contained proof. Let

2\
afBor . _ af ot ) ao BT at  Bo
a : 7)\4‘2#@ a’” + 2u(a*a’" +a*"a’?),
Bar(Gom) i= [ a7 0r(CPrann)Vad,

1 apoT
Be(m) = 5 [ 6 por(Cpanm)ady,

1 .
L(n) = /pim\/&dy, where p’ :—/ ftdas
w -1

Vi(w) = Hi(w) x Hi(w) x L*(w),

1/2
70V @) = {lenalliwﬂnslaw} ~
(0%

By virtue of the assumptions on the applied forces, the solution {% of the
two-dimensional Koiter equations also satisfies the scaled Koiter equations
for an elliptic membrane shell, namely,

By (¢ m) + € Br(Cic,m) = L(n) for all n € Vig(w).

Recall that there exists a constant ¢, > 0 such that

Z |taﬂ‘2 < CeaaﬂgT(y)tU’rta,B
a,B

for all y € @ and all symmetric matrices (to3). Hence letting n = (% in
these scaled equations and using the inequality of Korn’s type on an elliptic
surface (Theorem 6.3) shows that the family (¢% )e>0 is bounded in Vs (w)
and that the families (€pa5(¢%))e>0 are bounded in L*(w).

Consequently, there exists a subsequence, still denoted by ({%)e>0 for
convenience, and there exist ¢* € Vj;(w) and pgﬂl € L?(w) such that

¢k — ¢ in Vir(w) and epag(Ck) — pop in LP(w)
(as usual weak convergence is denoted by —).
Fix 1 € Vg (w) in the scaled Koiter equations and let ¢ — 0; then the

above weak convergence yields By (¢*,m) = L(n). Since the space Vg (w)
is dense in Vjs(w), it follows that By (¢*,n) = L(n) for all n € V(w).
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Hence
¢ =g,

where ¢ € V/(w) is the unique solution to problem Pjps(w) (Theorem 8.2).
Furthermore, the weak convergence

Cx — ¢ in Vi (w)

holds for the whole family (¢%)e>o0-

By the inequality of Korn’s type on an elliptic surface, establishing the
strong convergence (7 — ¢ in Vjs(w) is equivalent to establishing the
convergence

which itself easily follows by letting 7 = (% in the scaled Koiter equations,

by noting that Bas((%,C%) < L({%), and by using the weak convergence
(k% — ¢ in Vy(w). O

Note that the convergence results of Theorem 11.3 have been improved
by Lods and Mardare (1998b, 2000b), who showed that

1 €
H%/ u®drs — Ck
€

= 0(e'?),
HY(w)x HY(w)x L2(w)

and by Mardare (19985, Theorem 5.1), who showed that

€% = €l ()< H1 () x L2 () = O(e'/?).

Under the assumptions of Theorem 11.3, the function (5 x thus ‘loses its
boundary condition’ as € approaches zero. We have already remarked in
Section 8.3 that, under the same assumptions, a similar ‘loss of boundary
condition’ is shared by the average 2—15 ffe u3 dx§ as € approaches zero.

We next consider generalized membrane shells, as defined in Section 9.1.

In the same way that in Section 9.2 we required the applied forces to be
‘admissible’ in order to carry out (in Theorem 9.1) the asymptotic analysis
of the three-dimensional solutions, we need to assume that the applied forces
enter Koiter’s equations in such a way that the corresponding (scaled) linear
forms are continuous with respect to the norm |- | of the ‘limit’ space
ng(w), and uniformly so with respect to e.

More specifically, we set the following definition, after Ciarlet and Lods
(1996d) (notice the analogy with that given in Section 9.2). Applied forces
are admissible for the two-dimensional Koiter equations if there exist func-
tions % = % € L?(w) such that, for each & > 0, the right-hand side in
Koiter’s equations can also be written as

/pi’am\/&dy = 6/ gpaﬁfya,g(n)\/&dy for all § = (n;) € Vg (w).

w
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As in Section 9.3, we let

V%w(w) := completion of V(w) with respect to | - [,

where

V(w) == {n=(n) € H(w) : p = 0 on 1},
1/2
| = {Z \m(n)l%,w} :
a7ﬁ

As in Section 9.3, we restrict ourselves to generalized membrane shells ‘of
the first kind’, since we have already noted that there is no loss of generality
in doing so.

Theorem 11.4: Justification of Koiter’s equations for ‘generalized
membrane’ shells. Assume that 8 € C3(w;R3). Consider a family of
linearly elastic generalized membrane shells of the first kind, with thickness
2e approaching zero, with each having the same middle surface S = 0(w),
with each subjected to a boundary condition of place along a portion of its
lateral face having the same set 8(~g) as its middle curve, and subjected to
applied forces that are admissible for both the three-dimensional equations
(Section 9.2) and the two-dimensional Koiter equations, the functions 0B ¢
L*(w) coinciding in addition with those found in Theorem 9.1.
For each € > 0, let

wt e HY(OF) and (5 € H'(w) x H'(w) x H2(w),

respectively, denote the solutions to the three-dimensional and two-dimen-
sional variational problems P(Q°) and P (w). Let

¢ € Vi (w)

denote the solution to the two-dimensional ‘scaled’ variational problem P}iw (w)
(Theorem 9.2), a solution which is thus independent of €. Then

1 3

— u®dz; — (in ng(w) as e — 0,

2e J_,

(% — ¢ in Vg\/l(w) as e — 0.

Proof. Under the assumptions that @ € C3(w;R3) and that the applied
forces are admissible in the sense of Section 9.2, the convergence
1 €

2% ).

1 1
u®dz§ = B /_1 u(e)drs — ¢ in Vg\/l(w)

as € — 0 was already established in Theorem 9.1.
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The rest of the proof is an elaboration of Caillerie and Sanchez-Palencia
(1995a, Theorem 4.5), who established the weak convergence (% — ¢ in
ng(w) as € — 0.

Since the space V(w) is dense in the space V(w) with respect to the
norm || - |1, and there exists ¢ such that [n|2 < c||n|j1 for all n € V(w),

the space Vg (w) is dense in V(w) with respect to |- |M and thus the space
ng(w) is also the completion of Vg (w) with respect to | - |M.
Let B?M and Lg\/[ denote the unique continuous extensions from V(w) to

ng(w) of the bilinear and linear forms Bjy; and Lj; defined by

Bur(C,m) = / 007 (e () Va dy,

w

Ly(n) = /waﬁm@(n)\/&dy-

Since the applied forces are admissible for the two-dimensional Koiter
equations, their solution (% satisfies the scaled Koiter equations for a gen-
eralized membrane shell, namely,

Bar(Cic:m) +€°Br(Cic,m) = Lar(n) for all n € Vi(w),

where

Be(om) = [ a0 (Qpasln)Vady,

Setting 1 = (% in these scaled equations then shows that the family

(€% )e>0 is bounded in the space ng (w) and that the families (pa8(C%))e>0
are bounded in L?(w).
Consequently, there exists a subsequence, still denoted by ({%)->0 for

convenience, and there exist ¢* € V%\/l (w) and p;ﬁl € L*(w) such that

i — ¢ in VA, (w) and epap(C) — pop in L2 (w).

Fix 1 € Vg (w) in the scaled Koiter equations and let ¢ — 0; then the
above weak convergence yields B?w(c*, 1) = Ly(n). Since Vi (w) is dense
in ng(w), it follows that ng((*,n) = ng(n) for all p € ng(w). Hence

¢ =

where ¢ € Vg\/[(w) is the unique solution to the scaled problem 73?\4(44))
(Theorem 9.2). Furthermore, the weak convergence

Cic — ¢ in Vi ()
then holds for the whole family (¢%)e>o0-



194 P. G. CIARLET

By definition of the norm |- | and of the bilinear form Bj; and of its
extension B?\/p establishing the strong convergence (7 — (¢ in Vg\é,(w) is

equivalent to establishing the convergence
B (¢ = €. ¢ =€) =0,

which itself easily follows by letting 7 = (% in the scaled Koiter equations,
by noting that Ba(¢%,C%) < La({%), and by using the weak convergence

¢ — ¢ in ng(w). O
Finally, we consider flezural shells, as defined in Section 10.1

Theorem 11.5: Justification of Koiter’s equations for ‘flexural’

shells. Assume that 6 € C3(w;R3). Consider a family of linearly elastic

flexural shells, with thickness 2¢ approaching zero, with each having the

same middle surface S = 6(w), and with each subjected to a boundary con-

dition of place along a portion of its lateral face having the same set 8(vp) as

its middle curve, and let the assumptions on the data be as in Theorem 10.1.
For each £ > 0, let

(uf) € H' (%) and ¢ = (G i) € H' () x H'(w) x H*(w),

respectively, denote the solutions to the three-dimensional and two-dimen-
sional variational problems P(2¢) and P (w). Also, let

¢=(G) € H'(w) x H'(w) x H*(w)
denote the solution to the two-dimensional scaled variational problem Pp(w)
(Theorem 10.2), a solution which is thus independent of . Then
1 &
2 ).
(5o — Co in HY(w) and (i3 — G in H?(w).

uf da§ — ¢ in H'(w),

Proof.  Under the assumptions that there exist constants A > 0 and p > 0
and functions f* € L?(Q2) independent of € such that

A=)\ and ,Uze = K,
fo8(2f) = 2 fi(x) for all 2° = 7°x € QF

(these are the assumptions on the data for a family of linearly elastic flexural
shells) and that 6 € C3(w;R3), then

1 [c 1 [t
%/eufdxf@: 28/lui(e)dx% — ¢; in H'(w)

as € — 0 are easy corollaries to the fundamental convergence result of The-
orem 10.1.
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The weak convergence (5 — ¢ in H'(w) x H'(w) x H*(w) was first
established by Sanchez-Palencia (1989a, Theorem 2.1), as a consequence of
general results in perturbation theory.

We directly establish here that, in fact, the strong convergence (7 — ¢
in Vg (w) holds. Let the bilinear forms Bj; and B and the linear form L
be defined as in the proof of Theorem 11.3; in addition, let

Vi(w):={ne VigWw) :vpM) =0in w} C Vg (w),
the space Vg (w) being equipped with the norm

n=(m)— {Z 1717 + H773H§,w}'
«

By virtue of the assumptions on the applied forces, the solution {7 also
satisfies the scaled Koiter equations for a flexural shell (it is instructive to
compare them with those for an elliptic membrane shell introduced in the
proof of Theorem 11.3), namely,

5 But(Cieom) + Be(Gierm) = L(n) for all m € Vig(w).

Letting m = (% in these scaled equations and using the inequality of
Korn’s type on a general surface (Theorem 4.4) then show that the family
(€% )e>0 is bounded in Vg (w) and that the families (é%‘ﬁ(c%))oo and
(pap(C5))e>0 are bounded in L?(w).

Consequently, there exists a subsequence, still denoted by ({%)->0 for
convenience, and there exists ¢* € Vi (w) such that

Ck — ¢ in Vi(w) and ya5(Ck) — 0 in L*(w).
The weak convergence (% — ¢* in Vg (w) implies the weak convergence
Yap(€%) = Yap(€*) in L?(w); hence v,5(¢*) = 0 and thus ¢* € Vp(w). Fix

1 € Vp(w) in the scaled Koiter equations and let ¢ — 0; then the weak
convergence (7 — ¢* in Vi (w) yields Br(¢*,m) = L(n). Hence

¢ =,

where ¢ € Vp(w) is the unique solution to the scaled problem Pp(w) (The-
orem 10.2) and the weak convergence then holds for the whole family ({%)c>0.

By the inequality of Korn’s type on a general surface combined with the
strong convergence Y,5((%) — 0 in L?(w) and the relations v,5(¢) = 0,
establishing the strong convergence (% — ¢ in Vg (w) is equivalent to es-
tablishing the convergence

BF(C?( _Cvc% _C) - 07
which itself easily follows by letting 7 = (% in the scaled Koiter equations,
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by noting that Br(¢%,C%) < L({%), and by using the weak convergence
(% — ¢ in Vi (w). O

A major conclusion emerging from Theorems 11.3, 11.4, and 11.5 is that
the two-dimensional linear Koiter equations are thus justified for all kinds
of shells, since, in each case, the average across the thickness of the three-
dimensional solution and the solution of Koiter’s equations have the same
principal part, namely, in each case the solution ¢ to the corresponding
two-dimensional scaled problem, as the thickness approaches zero.

By virtue of the de-scalings, which are in each case of the form (* = ¢
(see Sections 8.3, 9.3, and 10.3), the above asymptotic analyses also show
that the solution % of Koiter’s equations is ‘asymptotically as good’ as the
solution ¢° obtained by solving either the two-dimensional problem P35, (w),

or the two-dimensional problem P}j\f[(w), or the two-dimensional problem
Pi(w) (see Theorems 8.3, 9.3, and 10.3), according to which category the
shell falls into.

Compared to these limit two-dimensional equations, Koiter’s equations
thus possess two outstanding advantages: not only does using Koiter’s equa-
tions avoid a ‘preliminary’ knowledge of the category in which a given lin-
early elastic shell falls into, but it also avoids the mathematical or numerical
difficulties inherent to each such category, briefly summarized below.

(a) If the shell is an elliptic membrane, no boundary condition can be im-
posed on the normal component (5 of the displacement field since (5 is ‘only’
in L?(w)!
(b) If the shell is a generalized membrane, the solution ¢° belongs to an
‘abstract’ completion Vg\/[(w); the boundary conditions on ¢ may thus be
quite ‘exotic’!
(c) If the shell is flezural, the unknown ¢° is subjected to the constraints
Ya3(€%) = 0 in w, which certainly hinder its numerical approximation!
It is to be strongly emphasized that these conclusions could not be reached
by an asymptotic analysis of Koiter’s equations alone, for they definitely
rely on an asymptotic analysis of the three-dimensional equations, namely,
the content of Sections 8, 9, and 10!

Note that engineers and experts in computational mechanics often base
their classification of linearly elastic shells on the relative orders of mag-
nitudes of the ‘membrane’ and ‘flexural’ strain energies, namely,

8 oapoT,E £ 15
2/“ for, 'YUT(CK)'Yaﬂ(CK)\/&dy
and

E/a) aﬁmapw CK)Paﬁ(CK)\fdya
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found in Koiter’s energy j5 (Section 11.1) evaluated at a given solution (%,
rather than on an asymptotic analysis of the three-dimensional solution as
here. This approach, in which the applied forces may thus also dictate either
‘membrane-dominated’ or ‘flexural-dominated’ behaviour, has recently been
given a mathematical basis by Blouza, Brezzi and Lovadina (1999).

Koiter’s equations are often used for identifying and approximating bound-
ary layers in shells; see Hakula and Pitkaranta (1995), Hakula (1997), Gerdes,
Matache and Schwab (1998).

By contrast with ‘boundary’ layers, ‘nterior’ layers, that is, ‘away from
the lateral face’, may appear inside shells with a hyperbolic middle sur-
face. This challenging phenomenon seems again to be well modelled by
Koiter’s equations, as suggested by Sanchez-Palencia and Sanchez-Hubert
(1998). See also Karamian (1998a), Leguillon, Sanchez-Hubert and Sanchez-
Palencia (1999), Pitkdranta, Matache and Schwab (2000).

Koiter’s equations may be adapted to the modelling of shells with peri-
odically varying thickness, by means of a homogenization procedure; see
Telega and Lewinski (1998a, 1998b), and Lewinski and Telega (2000). They
may likewise be adapted to shells made of anisotropic and nonhomogeneous
elastic materials, in which case additional terms in the strain energy couple
the linearized change of metric and linearized change of curvature tensors;
see Caillerie and Sanchez-Palencia (19954), Figueiredo and Leal (1998).

11.8. Koiter’s equations for shells whose middle surface has little reqularity

In Section 5, we described how Blouza and Le Dret (1999) showed that
the introduction of new expressions Y,5(n) and pag(n) (reproduced below)
for the functions v,3(n) and pyg(n) allows us to consider more general
situations, where the mapping @ need only be in the space W2 (w;R3). See
also Blouza and Le Dret (2000) for further developments of this approach.

For a linearly elastic shell, simply supported along its entire boundary
(boundary conditions of clamping along a portion of its boundary can be
handled as well, provided they are first re-interpreted in an ad hoc manner),
the associated ‘Koiter’s equations for shells whose middle surface has little
regularity’ accordingly take the following form. The unknown C;, which
is now the displacement field of the middle surface, satisfies the variational
problem Pj- (w):

Cx € Vi(w) = {1 € HY(w) : duph - a3 € L2 (W)},
~ . 3 — ~E | ~
[ (e R € Faa) + 50 or (€5 )an() }ady

3
:/Tf-ﬁx/&dy
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for all 77 € V¢ (w), where

o 1, - -
Yap (M) = 5(3ﬁn‘aa+8an'aﬁ),
ﬁaﬁ(ﬁ) :

(8aﬁﬁ - Fgﬂaaﬁ) - as,

the given function p° € L?(w) accounts for the applied forces, and a®377*
are the usual contravariant components of the two-dimensional elasticity
tensor of the shell.

Recall that Y,5(77) = 7a3(n) and ps(7) = pas(n) if § = nia’ is such that
n = (n;) € H'(w) x H'(w) x H2(w).

A proof similar to that of Theorem 11.1, now based on the inequality of
Korn’s type on a surface with little regularity (Theorem 5.2), then produces
the following result.

Theorem 11.6: Existence and uniqueness of solutions. Let there

be given a domain w in R? and an injective mapping 8 € W2 (w;R3) such

that the two vectors a, = 0,60 are linearly independent at all points of w.
Then the associated ‘Koiter’s equations Pj (w) for a shell with little reg-

ularity’ have exactly one solution, which is also the unique solution to the

minimization problem:

Find Ei( such that

Cx € Vic(w) and j5(Cx) = inf  j5 (), where

"N7€VK( )
e (~ 1 afoTex ~\~ ~
Fic@) =5 [ {20 (7))
53 afoTEex ~g ~
+ a7 P (M)Pas (M )}fdy /p -nVady. O

It must be emphasized that, in this approach, the unknown Z} and the
fields 7 are d1sp1acement fields of the middle surface, no longer recovered in

general as C Kk = Ck Ja'or 1n = n;a" by means of their covariant components
CK,’L Or 17;.

11.4. Budiansky—Sanders equations

Sanders (1959) and Koiter (1960) have proposed a linear shell theory akin
to Koiter’s, where the covariant components p,g(n) of the linearized change
of curvature tensor are replaced by the covariant components pfg (n) of the
‘Budiansky—Sanders linearized change of curvature tensor’, defined by

5 0%700(m) + ia(m).

The remaining terms in the equations are otherwise identical to those in

pE5(n) = pas(n) —
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Koiter’s equations. In other words, the Budiansky—Sanders equations take
the following form, when they are stated as a variational problem Pgq(w):
Find ¢ = (¢{) such that

¢C e Vi(w)={n=(m) e H' (w) x H'(w) x H*(w) :
ni = 0yn3 =0 on Yo},

afBoT 63 apoT
[ {ea v € vantm) + a0 S (€S ) fady
= / penivady

for all m = (n;) € Vg (w).

The interest of using the modified functions pgg (n), rather than the ‘genu-
ine’ functions p,3(n), has been discussed at length in Budiansky and Sanders
(1967) and, for this reason, the resulting theory has become known as the
Budiansky—Sanders theory.

In addition, Destuynder (1985) has shown how this theory can be derived
from three-dimensional linearized elasticity, again on the basis of two a priori
assumptions, both of a geometrical nature, one of them being the linearized
Kirchoff-Love assumption (Section 11.1).

Theorem 11.7: Existence and uniqueness of solutions. Let the as-
sumptions be as in Theorem 11.1. Then the associated Budiansky—Sanders
equations Pj¢(w) have exactly one solution (which is also the unique solu-
tion to a minimization problem, the form of which should be clear).

Proof. The definition of the functions pfg (n) and the equivalence

Ya3(m) = pE§ (M) = 0in w & Yap(n) = pas(n) =0 in w

together imply that the proof of the existence and uniqueness of the solution
to Koiter’s equations (Section 4 and Theorem 11.1) extends almost verbatim
to the Budiansky—Sanders equations. O

12. Naghdi’s equations

While Koiter’s equations belong to the family of Kirchhoff-Love theor-
ies, two-dimensional shell equations that rely on the notion of one-director
Cosserat surfaces were proposed by P. M. Naghdi, again in the sixties. Since
then, they have appealed as much as Koiter’s equations to the computational
mechanics community. In particular, they seem to be quite effective in the
numerical simulation of shells with a ‘moderately small’ thickness; in this
respect, see the companion article by Dominique Chapelle.

After describing the associated two-dimensional Naghdi equations for a
linearly elastic shell, we briefly review in this section the existence and
uniqueness theory for these equations.
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O)+xfa’(y)

Fig. 12.1. The five unknowns in Naghdi’s equations are the three co-
variant components (7 : w — R of the displacement field of the middle
surface S and the two covariant components ¢, : @ — R of the linear-
ized rotation field of the unit normal vector along S; this means that,
for each y € w, (F(y)a’(y) + z575, (y)a®(y) is the displacement of the
point (8(y) + z5a3(y)) of the reference configuration of the shell

Consider as in Section 11.1 a shell with middle surface S = 6(@) and
thickness 2¢ > 0, constituted by a homogeneous and isotropic linear elastic
material with Lamé constants A* > 0 and u® > 0, and subjected to applied
body forces with contravariant components f€ € L?(QF).

In Naghdi’s approach (Naghdi 1963, 1972), the a priori assumption of
a mechanical nature about the stresses inside the shell is the same as in
Koiter’s approach (Section 11.1), but the a priori assumption of a geomet-
rical nature is different. The points situated on a line normal to S remain on
a line and the lengths are unmodified along this line after the deformation
has taken place as in Koiter’s approach, but this line need no longer remain
normal to the deformed middle surface.

In the linearized version of this approach described here, there are five
unknowns: the three covariant components (7 : w — R of the displacement
field ¢fa’ of the middle surface S and the two covariant components r¢, : @ —
R of the linearized rotation field 7 ,a® of the unit normal vector along S.
This means that the displacement of the point ((y)+z5a®(y)) is the vector
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(CE(y)ai(y) + 2575 (y)a*(y)); see Figure 12.1. The surface S thus becomes
a Cosserat surface, in the sense that it is endowed with the field r5a®, then
called a director field (it is easily seen that the rotation field of the unit
normal should be indeed tangential in a linearized theory).

In their weak formulation, Naghdi’s equations for a linearly elastic shell

consist in solving the following variational problem P53 (w):
Find (¢%, %) = ((¢§), (5)) such that

(¢%,7%) € Vv(w) := {(n,5) = (), (sa)) € H'(w) : i = 50 = 0 on 70},

J/ {00770 (s () + 10 1a8(¢7, 733 (m, 5) }a dy

/VWﬁﬁ ey s)ady = [ pn/ady
w

for all (1, s) € Vn(w) (the notation H(Q) standing for the space (H'(w))?
in the definition of the space Vy(w)), where

4)‘8/'58
)\E + QME

aaﬁm’,s —

aaﬁach + 2M€ (CLaUG/BT + aaTCL’BU),
1 o
'Yaﬁ(n) = 5(8,677& + 3a775) - Faﬁno — bagns3,

1
’Ya3(77, 3) = 5(804773 + bgna + Sa)’

1
Pap(,8) = — 5(9psa + Dasp) + Tigss — Wibopns

1 1
+ 553(85770 - FEUTIT) + 552(3&% = T00),

pe = /E £ dag

—E&

(the functions a®?, b, b7, I'7 5, and a defined as usual: see Section 4) and ¢
is a strictly positive constant (what should be the ‘best’ constant seems to
be an unresolved issue).

The functions a®?°7¢ are the contravariant components of the two-dimen-
sional elasticity tensor of the shell and the functions y,4(n) are the covariant
components of the linearized change of metric tensor associated with a dis-
placement field 7;a’ of the middle surface S, as before. The ‘new’ functions
Ya3(m, s) and pgﬁ(n, s) are the covariant components of the linearized trans-
verse shear strain tensor and of the Naghdi linearized change of curvature
tensor associated with displacement and linearized rotation fields 7;a’ and
sqa® of S; for a justification of these definitions, see, e.g., Bernadou (1994,
Part I, Chapter 3).
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The next existence and uniqueness result for the solution to the variational
problem P5;(w) is due to Bernadou, Ciarlet and Miara (1994, Theorem 3.1).

Theorem 12.1: Existence and uniqueness of solutions. Let w be
a domain in R?, let 7y be a subset of Ow with length 9 > 0, and let 8 €
C3(w;R3) be an injective mapping such that the two vectors a, = 0,0 are
linearly independent at all points of @.

Then the associated Naghdi equations P53, (w) have exactly one solution
(which is also the unique solution to a minimization problem, the form of
which should be clear).

Sketch of proof. Let

1/2
(n, )] = { > e+ D a3, )5, + > lpNs(n, S)\%,w} :
o, a

a’B

1/2
[(n,8)|| == { D il + Y Isaltw + (0, 8)I2} ,

1/2
[, 8) 1w = {Iml3. + s},

where n = (7;) and s = (s4).

(i) First, the Lemma of J. L. Lions, used as in Theorem 4.1, shows that
there exists a constant ¢y such that

17, 8) 11w < coll(m, 8)]]
5

for all (n,s) € H'(w) = (H'(w))”.
(ii) Next, let (n,s) € H!(w) be such that
Yap(M) = Ya3(n, ) = phz(n. s) =0 in w.

These relations imply that 73 € H?(w) and that pgﬁ(n,s) = pas(n) for

such fields (7, s). Hence Theorem 4.3(a) shows that the vector field n;a’ is
a linearized rigid displacement of the surface S = 6(w), in the sense that

there exist two vectors ¢, d € R? such that
ni(y)ai(y) =¢+dAb(y) for all y € @.
(iii) Let (n,s) € H'(w) be such that
Ya8(1) = Ya3(n, 8) = pas(n,8) =0 inw, n; =5, =0 on 7,

where g C « satisfies length 79 > 0. Then an argument similar to that in
the proof of Theorem 4.3(b) shows that (n, s) = (0, 0).
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(iv) A proof by contradiction as in Theorem 4.4 shows that there exists a
constant ¢ such that another inequality of Korn’s type on a general surface
holds (compare with that in Theorem 4.4):

1(m: 8)[[1, < ¢|(n, 5]
for all (n,s) € Vy(w), where

Vi (w) :={(n,8) = (), (sa)) € H'(w) : i = 54 = 0 on 7o}

(v) Finally, let B : Vn(w) X Vn(w) — R denote the bilinear form defined
by the left-hand side of the variational equations in problem P3 (w). Then
it is easily seen that there exists a constant c5; such that

|(n,8)[* < & Bx((n,5),(n,5))

for all (n,s) € Vy(w). We thus conclude that the variational problem
PR (w) has exactly one solution. O

Note that parts (ii) and (iii) of the above proof constitute another linear-
ized rigid displacement lemma on a general surface, which is due to Coutris
(1978).

The variational problem P3, (w) is, at least formally, equivalent to a bound-
ary value problem, which is given in losifescu (200x), where the regularity
of its solution when 7y = +y is also studied.

In the same manner that Blouza and Le Dret (1999) have generalized
Theorem 11.1 to Koiter’s equations for shells whose middle surface has little
regularity (Theorem 11.6), Blouza (1997) has extended Theorem 12.1 to
Naghdi’s equations for shells whose middle surface has little regularity (the
mapping 6 need only be in the space W2 (w;R?)).

Various asymptotic justifications of Naghdi’s equations, including error
estimates, are found in Lods and Mardare (1999, 2000a).

13. ‘Shallow’ shells

According to the definition justified via a formal analysis by Ciarlet and
Paumier (1996) in the nonlinear case, then justified via a convergence the-
orem by Ciarlet and Miara (1992a) in the linear case, a shell is shallow if
the deviation of its middle surface S¢ from a plane is of the order of the
thickness, that is, if the surface S can be written as S¢ = 6°(w), with a
mapping 6° : @ — R3 of the form

0°(y1,y2) = (y1,Y2,€0(y1, y2)) for all (y1,42) € W,

and 6 : W — R is a sufficiently smooth function that is independent of ¢;
see Figure 13.1. This specific ‘variation of the middle surface with &’ thus
constitutes an additional assumption on the data, special to (linear and
nonlinear) shallow shell theory.
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- ——

Fig. 13.1. A shell is ‘shallow’ if, in its reference configuration, the devi-
ation of its middle surface from a plane is (up to an additive constant)
of the order of the thickness of the shell

Like ‘general’ shells, linearly elastic ‘shallow’ shells are amenable to an
asymptotic analysis (as their thickness approaches zero) that also produces
‘limit’ two-dimensional equations. There are, however, crucial differences
between their analysis and that of ‘general’ shells.

First, different scalings are made at the outset of the asymptotic ana-
lysis on the tangential and mormal components of the displacement field
and different assumptions are likewise made on the tangential and normal
components of the applied body force.

More specifically, another ‘scaled unknown’ u(e) = (u;(¢)) : @ — R3 is
defined in this case by letting

us,(2°) = euq(e)(x) and u§(zf) = ug(e)(z) for all 2° = n°zx € O,

and it is assumed that the applied body forces are such that there exist
functions f¢ € L?(Q) independent of ¢ such that

o8 (2°) = ef*(x) and f3¢(a°) = 2 f3(x) for all 2° = n°2 € Q°

(compare with Section 7.2). Note in passing that these scalings and as-
sumptions are identical to those made in the asymptotic analysis of linearly
elastic plates (see Ciarlet (1997, Section 1.3)).

Making such scalings and assumptions on the data, Busse, Ciarlet and
Miara (1997) have shown how two-dimensional equations of a linearly elastic
shallow shell ‘in curvilinear coordinates’ can be given a rigorous justification
by means of a convergence theorem as the thickness goes to zero. We simply
list the limit equations that are found in this fashion, when they are stated
as a variational problem. Let

ANt
baﬂaT,& — e +/;lu€ 6@,3607 + 2,u€ (60405[37' + 6&75,30),
€ €
P = / fordag, ¢*° = / x5 f° das,

—& —&
. 1
elli*(n) = 5 (08Ma + dang) — en3dapl

(68 designates the Kronecker symbol), and let @ designate the vectors of
the contravariant bases along the middle surface S¢ (like the middle surface
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S¢, they now depend on ¢). Then the ‘limit’, de-scaled, vector field {* =
(¢f), where the functions ¢ : @ — R are the covariant components of the
displacement field (fa® of the middle surface S¢, satisfies the following
variational problem P%, (¢):

¢FeVgWw):={n=(n) € H(w) x H'(w) x H*(w) :
ni = Oynz =0 on Y},

3 .
/ {Ebaﬁ e (¢ el (m) + %b"ﬁ"T’EaaTCgf«?aﬁna,} dy = / pemidy

for all m = (n;) € Vg (w).

Another major difference thus lies in the outcome of the asymptotic ana-
lysis: as evidenced by the equations given above, the ‘limit’ variational
problem simultaneously includes ‘membrane’ and ‘flexural’ terms!

More precisely, even though it is still expressed in curvilinear coordin-
ates, the variational problem PZ, (w) resembles more the ‘limit’, de-scaled,
two-dimensional problem of a linearly elastic plate (see Ciarlet (1997, Sec-
tion 1.7)) than that of the shell!l For the contravariant components of the
metric tensor usually found in the two-dimensional elasticity tensor of a shell
are now replaced by Kronecker deltas, the area element along the middle sur-
face is replaced by dy, and finally, the components of the linearized change of
metric and change of curvature tensors are replaced by the functions e‘;}ga(n)

and 8a3n3, where neither the Christoffel symbols nor any components of the
curvature tensor of S® are to be found.

Problem P%, (w) constitutes Novozhilov’s model of a shallow shell, so
named after Novozhilov (1959). These equations were given a first justi-
fication by Destuynder (1980) for special geometries.

As shown by Ciarlet and Miara (1992a) (see also Ciarlet (1997, Chapter 3)),
the two-dimensional equations ‘in Cartesian coordinates’ of a linearly elastic
shallow shell can likewise be justified by means of an asymptotic analysis
of the three-dimensional equations. As expected, and shown by Andreoiu
(1999), the ‘limit’ displacement fields found in either curvilinear or Cartesian
coordinates, though not identical vector fields, are nevertheless ‘essentially
the same’, that is, their components agree ‘to within their first orders’, once
they are expressed in the same basis.

The asymptotic analysis of Busse, Ciarlet and Miara (1997) has been
pursued substantially further by Andreoiu, Dauge and Faou (2000) and An-
dreoiu and Faou (200x), who showed how to construct expansions of the
scaled unknown that yield error estimates of arbitrarily high order, thus
generalizing analogous results of Destuynder (1981, Corollary 7) and Dauge
and Gruais (1996, 1998) for plates. Such expansions comprise a ‘polyno-

mial’ part of the form > 7_,e*u” (as in a formal asymptotic expansion)
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and a ‘boundary layer’ part that compensates the violation of the boundary
conditions by the polynomial part.

The asymptotic analysis of the corresponding eigenvalue problem has been
carried out in Cartesian coordinates by Kesavan and Sabu (1999); there is
no doubt that it could be similarly carried out in curvilinear coordinates.

The exponential nature of the boundary layers that arise in linearly elastic
shallow shells is analysed in Pitkdranta, Matache and Schwab (2000).

Models of multi-layered, or composite, linearly elastic shallow shells, found
in particular in hulls of sailboats, have been obtained by Kail (1994) by
means of the method of formal asymptotic expansions.

Other definitions of ‘shallowness’ have been proposed, which often make
explicit reference to the curvature of the middle surface. For instance, Des-
tuynder (1985, Section 1) considers that a shell is ‘shallow’ if 7 = P for some
p > 2, where the other ‘small’ parameter 7 is the ratio of the thickness 2¢ to
the smallest absolute value of the radii of curvature along the middle sur-
face, p = 2 corresponding to Novozhilov’s model. In this direction, see also
Vekua (1965), Green and Zerna (1968, p. 400), Gordeziani (1974), Dikmen
(1982, p. 158), Pitkédranta, Matache and Schwab (2000).
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